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The unique aquatic nature of swimming makes it difficult to use social or technical strategies to mitigate the
tediousness of monotonous exercises. In this study, we propose the use of a smartphone-based multiplayer
exergame named MobyDick. MobyDick is designed to be played while swimming, where a team of swimmers
collaborate to hunt down a virtual monster. To this end, we take into account both human factors and technical
challenges under swimming contexts. First, we perform a comparative analysis of a variety of wireless
networking technologies in the aquatic environment and identify various technical constraints on wireless
networking. Second, we develop a swimming activity recognition system to enable precise and real-time
game inputs. Third, we devise a multiplayer game design by employing the unique interaction mode viable
in an underwater environment, where the abilities of human communication are highly limited. Finally, we
prototype MobyDick on waterproof off-the-shelf Android phones, and we deploy it in real swimming pool
environments (n = 8). Our qualitative analysis of user interview data reveals certain unique aspects of
multiplayer swimming games.
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1. INTRODUCTION

There are various forms of water-based exercises, ranging from fitness swimming and
aquarobics to rehabilitation programs. Compared to ground-based exercises, water-
based exercises generally have a lower risk of exercise-related injuries (i.e., lower
impacts on joints due to buoyancy) and higher exercise intensity (i.e., burning up more
calories due to water resistance). In this work, we will consider fitness swimming,
which ranks seventh for popular aerobic exercises in the United States [SFIA 2013].

Recent advances in sensor and device technology have spurred the creation of a va-
riety of swimming-related research prototypes and commercial products. For example,
Garmin SwimTM tracks a swimmer’s stroke type, workout distance, and time. Swim-
Master [Bächlin et al. 2009] analyzes swimming motions with several body-attached
sensors and provides feedback for swimming posture adjustment. Swimmoid [Ukai
and Rekimoto 2013] is a mobile underwater robot companion that visually analyzes
the swimmer’s posture and provides real-time feedback while following a swimmer.
Davey et al. [2008] presented a system that visualizes the motion data of swimmers
for performance analysis. Lee et al. [2013] proposed an exertion game for swimming,
Dungeons and Swimmers, in which a swimmer interacts with a virtual object using
swimming strokes.

In this article, we explore the design considerations for transforming swimming
activities into social exergames. Generally, a swimmer swims the length of a pool alone
and repetitively, which is similar to repetitive, individual, aerobic (RIA) exercises, such
as jogging or stationary cycling [Park et al. 2012]. A social exergame can mitigate
monotonous nature of RIA exercises and provide more engaging experiences [Park
et al. 2012; Ahn et al. 2009].

However, we should consider several constraints to design a socially interactive game
for swimming. According to social exergame design guidelines proposed by Park et al.
[2012], we should carefully select target activities that are intuitive to users and do
not disturb the core mechanics of the exercise, as players interact with the game using
their physical movements. Moreover, those selected target activities are recognized
accurately for interactive game play. For this, we choose intrinsic swimming activities,
such as swimming styles, stroke timing, and a turn, and we build the recognition
module around these activities.

Another consideration is how to support interplayer interaction. To interconnect mul-
tiple players while swimming, wireless data exchange needs to be supported. However,
networking technologies (specifically electromagnetic-based networking technologies)
suffer from severe performance degradation in the aquatic environment of a swimming
pool [Lanbo et al. 2008]. To understand networking characteristics in underwater envi-
ronments and draw game design implications that are applicable to swimming contexts,
we perform a comparative analysis on a variety of wireless technologies.

In addition, we explore human factors with respect to swimming. For example, people
would suffer from highly limited visual communication, lack of spoken communication,
and reduced sensitivity of auditory communication while swimming. Through careful
consideration, we design an interactive multiswimmer exergame, named MobyDick,
as a case study. In this game, multiple swimmers form a team and hunt down a
virtual white whale, MobyDick. Players attack the monster, defend themselves, and
heal the wounded by using swimming styles. MobyDick supports socially enriched
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swimming with a unique mode of interaction by employing a team-wide, audio-based
broadcast of social awareness cues, where each player is encouraged to individually
devise autonomous but highly strategic and collaborative game play.

In this work, the key research elements include (1) networking performance analysis
to understand the nonfunctional requirements of exergames, (2) real-time swimming
activity detection to enable players to interact with the game (using swimming actions
as a game controller), and (3) system implementation and a preliminary study of user
experiences on our game. We expect that our findings complement earlier swimming-
related work and may be applied to a variety of water-based exercises.

The key contributions of this article can be summarized as follows:

—We perform a comparative analysis of networking performance (e.g., packet ex-
change, packet loss, and reconnection latency) on popular electromagnetic-based
networking technologies, such as 3G, LTE, and WiFi, in aquatic environments. Over-
all, LTE provides fairly consistent performance despite the fact that it may experience
bulk loss and disconnection. WiFi shows periodic blackouts and high packet loss, and
3G does not work at all underwater.

—We build a real-time swimming activity detection module, named StrokeSense, by
leveraging multiple sensors in a smartphone, namely an accelerometer, a gyroscope,
a magnetometer, and a barometer. Unlike earlier sensing systems designed for ath-
lete training [Bächlin et al. 2009; Davey et al. 2008], StrokeSense enables real-time
classification of four popular strokes, as well as turn event and stroke timing detec-
tion. We conclude that considering differences in individual swimming capability is
critical for achieving high classification accuracy, and we demonstrate that person-
alized model training is preferable for our gaming scenario.

—We design MobyDick and implement a working prototype by carefully considering
earlier findings on networking and stroke sensing, as well as the design constraints
of underwater human communication. In particular, we demonstrate that certain
technical challenges, such as temporary network disconnection, can be overcome
with game interaction design. We perform a preliminary user study with eight par-
ticipants. Our interview results show that the proposed game is enjoyable, stroke
sensing is timely, mappings between stroke types and game commands are intuitive,
and the broadcast of social awareness cues provide a uniquely thrilling swimming
experience.

This work significantly extends the prior work [Choi et al. 2014], and the rest of this
article is organized as follows. In Section 2, we briefly illustrate the characteristics of
swimming and design considerations for social exergames. In Section 3, we perform
comparative analyses among wireless technologies, such as 3G, LTE, and WiFi, and
draw design implications to interconnect multiple swimmers. We then explain our
swimming activity recognition system, StrokeSense, in Section 4. In Section 5, we
introduce MobyDick and its design consideration on technical challenges and human
factors. In Section 6, we describe a detailed implementation of the MobyDick working
prototype and findings from a preliminary user study. In Section 7, we present related
work, and finally, we conclude this work with design implications and limitations in
Section 8.

2. TRANSFORMING SWIMMING TO A MULTIPLAYER EXERGAME

To transform swimming into a multiplayer exergame, it is important to study the
behavioral and environmental nature of swimming. Therefore, in this section, we illus-
trate the kinematics and characteristics of swimming and propose a set of game design
requirements and constraints.
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2.1. Background: Understanding Swimming

Swimming is an exercise of moving through water using special movements of the entire
body, called swimming styles. There are a variety of swimming styles, but popular ones
are freestyle (front crawl), backstroke (back crawl), butterfly, and breaststroke. Each
of these styles can be divided into a sequence of phases, which generally include arm
pulling, which is dragging an arm underwater, and recovery, which is taking an arm
out of the water [Colwin 2002].

With the freestyle and backstroke, one arm stroke is followed by the other arm
stroke. Each stroke consists of one arm pulling while the other arm is recovering, and
a swimmer can move forward by performing these alternately. Butterfly strokes are
different from those of freestyle and backstroke. With the butterfly, each stroke starts
with arm pulling and then pushing with leg kicking. This is followed by arm recovery
and a flying phase. With the breaststroke, the arm pulling phase is followed by an elbow
gathering phase. Then, arm recovery and a leg flexion phase are performed, and a stroke
ends with a leg kicking and gliding phase. In addition to swimming styles, another
movement, turn, can be added when considering pool swimming activities. There are
corresponding types of turns to each swimming style, but they all typically involve the
following sequence of phases: turning/rotation, pushing, gliding, underwater kicking,
and pull-out [Colwin 2002].

For efficient and fast swimming, a swimmer should perform all movements with a
high level of body balance and coordination, compared to land-based exercises such
as jogging or cycling. The high density of water, which is about 800 times that of air,
places high resistance on swimmers’ bodies, and they consume most of their energy
overcoming water resistance while swimming [Hines 2008]. To minimize such resis-
tance, swimmers need to balance their bodies horizontally with the water surface and
synchronize the movements of their body parts [Hines 2008; Bächlin et al. 2009].

2.2. Gamification of Swimming

Park et al. [2012] suggested several design guidelines to gamify existing exercises.
We extended those guidelines by considering swimming contexts and derived a set of
design requirements for a multiswimmer exergame.

2.2.1. Adapting Swimming Activities into the Game. To gamify an exercise, it is necessary
to decide how to map exercise activities into game activities (i.e., game inputs). For
example, in the case of swimming, we can use swimming speed, swimming styles,
stroke timing, elapsed time, total distance, or the number of turns as game inputs.
Based on a particular mapping, game design and interaction could be different, even
if the same exercise was considered. For instance, in the case of running activities,
Kukini [Campbell et al. 2008] considered movement distance in running as a game
input where a player explores a virtual world by performing quests. In Jogging over a
Distance [Mueller et al. 2007, 2010], a player jogs with a distant jogger, and they can
balance relative exertion using their heart rates via spatialized audio.

In addition to exercise activities that can be directly extracted from a target exercise,
additional activities can be incorporated into the game. For example, SwanBoat [Ahn
et al. 2009] is mainly based on treadmill running, but it also includes additional ges-
tures such as punching and flapping. Those additional activities can provide rich in-
teractions and fun to the game. However, employing such additional activities should
not disrupt the originally intended exercise. Swimming especially requires the coor-
dination of all body parts, so it has a small degree of freedom in which to add other
activities.

When transforming activities of a certain exercise into virtual game actions, design-
ers have to take intuitiveness of interaction into account so that players can engage
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in game play quickly. For example, SwanBoat [Ahn et al. 2009] maps the difference
between two runners’ speeds into a virtual swan boat’s direction (i.e., left or right).
In addition, when players punch, the swan boat strikes the other team’s boat using a
wing.

Technically, designing interaction devices and recognizing physical activities should
be considered as well to let users play the games using their own bodies. For example,
Wii Fit provides a controller that measures weight and senses body balance. Kinect
recognizes a player’s movement using a special camera. Moreover, recent advances
of sensor technologies have prompted the development of a variety of interactive de-
vices, such as an arm ergometer [Guo et al. 2006], an interactive treadmill [Ahn et al.
2009], a spirometer [Lange et al. 2009], a tangible ball [Kern et al. 2006], and playful
gadgets [Chang et al. 2008; Chiu et al. 2009; Lo et al. 2007]. A swimming exergame
should consider how to recognize swimming activities using specific sensors or devices
according to key design primitives.

2.2.2. Feedback for Swimmers. Another important issue in exergame design is how to
provide game feedback to a user. This should be decided according to sensory and
cognitive capabilities. Many current exergames use visual, auditory, or tactile feedback;
however, in swimming, a swimmer can be influenced by auditory noise from splashing
water and tactile stimuli from water resistance. Designers need to carefully consider
the performance characteristics of each output mechanism in such limited conditions.
According to a recent study [Bächlin et al. 2009], visual feedback is considered to be
more effective than auditory and tactile feedback, but it requires special hardware
(e.g., interactive goggles). In our work, we consider off-the-shelf, waterproof earphones
to deliver auditory feedback.

2.2.3. Social Interaction Between Swimmers. Social interaction can motivate an exerciser
to continue an exercise [Wilson and Brookfield 2009]. Therefore, prior exergame stud-
ies have incorporated interplayer interaction into their games, such as providing social
awareness to remote exercisers [Mueller et al. 2007, 2010] and enabling competition
or cooperation among players [Park et al. 2012; Mueller et al. 2009; Mueller and
Agamanolis 2005]. For swimming, there are a variety of candidate social interac-
tions. For example, designers can transform a solitary swimming workout into social
swimming or enrich user experience in group swimming activities, such as swimming
lessons.

Many current social exergames use wireless technologies to enable remote inter-
actions. However, for water-based exercises, such as swimming or skin diving, it is
necessary to take thorough account of network communication due to the loss of sig-
nal propagation underwater. Such an environmental characteristic can influence not
only technical constraints, such as device design or network protocols, but also game
contents.

3. NETWORK PERFORMANCE DURING SWIMMING

To allow swimmers to play exergames with each other, wireless communication is
necessary. However, the aquatic environment of swimming makes wireless communi-
cation difficult. For example, acoustic waves suffer from multipath propagation, and
electromagnetic waves suffer from signal attenuation in shallow and conductive wa-
ter conditions, such as a swimming pool [Lanbo et al. 2008]. Designing multiplayer
swimming exergames requires an understanding of networking characteristics in the
context of swimming.

In this section, we provide a comparative analysis of the performance of different
wireless networking technologies in the swimming pool environment and draw
implications for designing interactive systems. Specifically, we aim to answer the
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Fig. 1. Network performance measurement configuration.

following questions: (1) How do the different networking technologies (WiFi, 3G, and
LTE) perform when the device is underwater? (2) If the network is disconnected, how
long does it take to restore its connection? (3) Will there be significant differences in
networking performance for different swimming strokes?

3.1. Network Performances at Different Depths

We first observed the changes in the overall performance of networking technologies
when underwater. To do this, we measured the round-trip time (RTT), packet loss rate
(PLR), and received signal strength (RSS) of WiFi, 3G, and LTE at varying water depths.
In addition, we compared the changes in the link speed at different WiFi settings and
water depths.

3.1.1. Experimental Setup. We built an in-lab testbed to simulate a swimming pool using
a large water container with a diameter of 1m and a depth of 1m (Figure 1(a)). Because
the ionized particles of chlorine can affect wireless signal attenuation, we used fresh
water with added chlorine to simulate a real swimming pool.

We mounted a smartphone onto a wooden rod, which was used to place the phone
at specific depths underwater. The rod and smartphone were lowered into the water
in 5cm increments. While submerged, the smartphone sent a User Datagram Protocol
(UDP) packet every 50ms to a remote server (2,000 packets in total) located by a laptop
and connected to a wired network (see Figure 1(b)). Each packet sent was 128 bytes, a
common packet size observed in online interactive games [Färber 2002]. After sending
a packet, a submerged node waited for an ACK packet of the same size; thus, we
simulated periodic state exchanges between a client and a server. We repeated these
measurements 10 times for each experimental condition.

We considered a variety of experimental conditions. For the WiFi measurements, we
varied the protocols to include 802.11g (2.4GHz), 802.11n (2.4GHz), 802.11a/n (5GHz),
and 802.11ac (5GHz), with two different transmission power settings for the access
point (AP): 100% and 50%. For LTE measurements, we used two major cellular opera-
tors in Korea, LG U+ and KT Olleh. For 3G measurements, we used KT Olleh.

In the experiment, we used two waterproof Android smartphones: the Casio G’zOne
Commando 4G LTE and the Samsung Galaxy S4 Active, which are advertised as be-
ing able to sustain water immersion at 1m for 30 minutes. Since the Casio G’zOne
Commando 4G LTE did not support 5GHz WiFi operations or the KT Olleh operator,
we used the Galaxy S4 Active for WiFi and KT Olleh’s LTE measurements; the Casio
G’zOne Commando 4G LTE was used for LG U+’s LTE measurements only. The laptop
for the server had a 2.5GHz CPU and 8GB memory. To measure the WiFi connection,
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Fig. 2. RTT measurement results.

Fig. 3. PLR measurement results.

we used ipTIME’s A2004Plus AP, which supports 802.11b/g/n/ac and has two antennas
for each bandwidth, 2.4GHz and 5GHz.

We note that RSS values are dependent on the characteristics of wireless communi-
cation methods. Android periodically reports RSS values for WiFi communication. For
Wideband Code Division Multiple Access (WCDMA), Android reports a Common Pilot
Channel (CPICH)’s Received Signal Code Power (RSCP) in decibel-milliwatt, measur-
ing the power level of the pilot channel of a cell. For LTE, Android reports Reference
Signal Received Power (RSRP) in decibel-milliwatt, measuring the average power of
cell-specific reference signals that exist in all downlink subframes. For ease of discus-
sion, we simply call these metrics RSS.1

3.1.2. Measurement Results. Measurement results are plotted in Figures 2 through
5. In addition, we provide descriptive statistics of measurement results in Online
Appendix A. We observed that the performance of wireless communication deterio-
rated as depth increased. Accordingly, PLR and the variance of RTT values increased.
In air, WiFi showed the lowest RTT (less than 10ms), whereas cellular networks had
much larger RTT values (3G-KT Olleh: 165.00ms; LTE-KT Olleh: 50.04ms; LTE-LG
U+: 50.21ms), agreeing with previous measurement studies [Huang et al. 2012]. We
theorize that the reason LTE has greater latency than WiFi is due to the multihop na-
ture of IP data delivery in cellular network architecture [Larmo et al. 2009]. However,
LTE uses millisecond-level scheduling and has a smaller latency than 3G.

1In WCDMA and LTE, actual RSS calculation should consider the carrier bandwidth. For example, LTE’s
RSRP should be multiplied by the number of subcarriers.
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Fig. 4. RSS measurement results.

Fig. 5. Link speed measurements results: 802.11g/n at 2.4GHz; 100%/50% AP Tx power.

Of the three, LTE performed the best at the greatest water depth. WiFi 2.4GHz
showed an increase in the PLR at a depth of 10cm, and even worse, network dis-
connection for the case of 802.11n with 50% Tx power. The 802.11n/ac at 5GHz did
not work at all underwater, although the results are not shown due to space limita-
tions. 3G also nearly failed to sustain connectivity when the device was immersed at a
depth of 5cm. The PLR of LTE started increasing notably at greater depths compared
to WiFi and 3G: 15cm (KT Olleh) and 20cm (LG U+); this shows that LTE is more
robust than the other networking technologies. There are several possible explana-
tions for this observation. First, LTE typically uses lower frequency bands than 3G’s
Evolved High-Speed Packet Access (HSPA+) and WiFi (LTE: 800MHz vs. 3G: 2GHz
vs. WiFi: 2.4GHz/5GHz); thus, LTE’s water absorption coefficient is smaller than the
other technologies. According to the Beer-Lambert law, the intensity of a radio wave is
exponentially attenuated along its traversing distance, and the absorption coefficient
is dependent on the frequency of the radio wave—that is, the higher the frequency, the
higher the absorption coefficient [Wozniak and Dera 2007]. Second, LTE uses multi-
ple antennas, and its physical modulation employs the Orthogonal Frequency-Division
Multiple Access (OFDMA) scheme. Whereas 3G’s WCDMA spreads a signal into a wide
band, LTE’s uplink uses narrower frequency bands for transmission, and the use of
multiple antennas makes communication more reliable and robust. Third, LTE has
more robust automatic repeat-request (ARQ) schemes for reliable data delivery (one at
the Medium Access Control (MAC) layer and another at the Radio Link Control (RLC)
layer) [Larmo et al. 2009].

We compared the performances of different WiFi 2.4GHz settings; in no case were
the RTT and PLR values affected when the smartphone was slightly submerged (5cm).
The mean RTT values ranged from 4ms to 6ms in air and 5cm underwater. There was
no packet loss except for the case of 802.11g with 50% Tx power, which showed only
1% packet loss. However, the signal strength were significantly reduced by more than
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Fig. 6. Locations of four sites.

17dBm when the smartphone was submerged. In addition, both 802.11g and 802.11n
lowered the data rates to cope with degraded channel conditions; the median link speed
were dropped from 54Mbps to 11Mbps (802.11g) and from 72Mbps to 39Mbps (802.11n)
for 100% Tx power. When Tx power was reduced to 50%, the link speed for 802.11g was
adjusted to 5Mbps at a depth of 5cm, whereas 802.11n did not show the different link
speed.

At a depth of 10cm, notable performance degradation was observed in both 802.11g
and 802.11n; the mean RTT values significantly increased, ranging from 22ms to 37ms,
and 7% to 9% of packets were lost on average for 100% Tx power. The signal strength
was reduced by more than 11dBm for all settings. The 802.11g adjusted the median
link speed to 2Mbps and 1Mbps for 100% and 50% Tx power. The 802.11n showed the
faster link speed than 802.11g; the median link speed of 802.11n for 100% Tx power was
13Mbps. In addition, halving the Tx power made 802.11n lose connectivity. All WiFi
2.4GHz settings completely failed to sustain their connectivity at a depth of 15ms. We
hypothesized that these performance differences were mainly due to rate adaptation
algorithms that vary widely across different protocols and vendors [Lacage et al. 2004;
Pefkianakis et al. 2013]. In an over-the-air measurement, we observed that WiFi 5GHz
showed significantly higher data rates than WiFi 2.4GHz (802.11ac: 433Mbps, 802.11n:
150Mbps) and yet immediately lost connectivity when the smartphone was submerged.

When we compared the performances of two LTE operators, the over-the-air mea-
surements were not significantly different. The mean RTT values of KT Olleh and LG
U+ were 50.04ms and 50.21ms, respectively. However, we observed significant perfor-
mance differences between the two operators underwater. KT Olleh did not experience
any packet loss to a depth of 10cm, but at a depth of 15cm, it had a packet loss of
68%. Connection was completely lost at a depth of 20cm. In contrast, LG U+ had 1%
packet loss at a depth of 15cm, and the loss rate increased to just 16% at a depth of
20cm. We also compared RTT; KT Olleh had consistently lower RTT values than LG
U+ underwater. KT Olleh maintained mean RTT values of around 60ms (although its
connection was disrupted after 10cm), whereas those of LG U+ substantially increased,
ranging from 50.21ms (air) to 2,026.00ms (20cm depth).

Despite the higher KT Olleh RSS values, LG U+ had better performance underwater.
We explain some possibilities for this here. LG U+ uses 800MHz bands, whereas KT
Olleh uses 900MHz bands. As shown earlier, lower-frequency bands are more robust
underwater. Furthermore, LG U+ may implement more robust link scheduling policies,
resulting in lower PLR values but higher RTT values. We measured RSS and RTT
values at four sites to investigate how RSS and RTT values vary, as shown in Figure 6.
Measurement results are plotted in Figure 7. Of the sites considered, we found that
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Fig. 7. Performance comparison of two LTE providers at different sites.

Fig. 8. RTT traces of LTE (LG U+) at two different water depths.

KT Olleh had consistently higher RSS values (with the RSS differences ranging from
2dBm to 9dBm) and lower RTT values (with the RTT differences ranging from 4ms to
7ms), similar to the results of our testbed experiments.2 Given that LG U+ had better
performance in terms of PLR, even with higher RSS values, we can hypothesize that
there could be RSS bias due to carrier differences (e.g., cell planning and power/channel
allocation) and/or frequency bands, and link scheduling policies may have a more
critical impact on the overall performance than RSS values.

Although the median values of LTE were not very large, we observed RTTs with
values greater than 1,000ms in certain trials, specifically when a phone was immersed
in water more than 10cm deep. We manually investigated the RTT traces to find the
root cause of this large latency (Figure 8). In depths of 5cm and 15cm, we found that
there were sudden spikes in RTT and then RTT gradually decreased over time. These
spikes were immediately followed by a bulk packet loss, ranging from only a few packets
to hundreds of packets.

In our experiments, we used UDP packet streams that are buffered at the UDP
transport layer and the LTE link layer. When the channel conditions are good,
scheduled packets are delivered immediately. However, when the channel conditions
worsen (due to signal attenuation and destructive interferences), the LTE link layer
takes a significantly longer time for packet (re)transmissions. As illustrated earlier,
LTE has dual ARQ layers [Larmo et al. 2009]. LTE can have eight outstanding
link-layer packets, each of which is scheduled in a 1ms subframe. The size of a
subframe can be up to tens of kilobytes, depending on the channel bandwidth. When
channel conditions become very poor, a large number of packets are backlogged and
retransmitted. These packets will then reach their maximum transmission limits and

2RTT outliers are due to sporadic RTT spikes that may be due to other factors than RSS variation, such as
flow control latency and queueing delays at intermediate network nodes.
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Fig. 9. Reconnection time between WiFi and two LTE providers (KT Olleh and LG U+).

eventually be dropped, thus leading to bulk packet loss. Moreover, since an LTE base
station typically uses subframe-level link scheduling under poor channel conditions, it
may allocate subframes to those nodes with good channel conditions. This just creates
more backlogged packets. In practice, each operator may use different scheduling
policies, although proportional fairness algorithms are commonly used.

3.2. Network Reconnection Latency

Due to the frequent submergence of the communication device while swimming and
the resulting severe channel conditions, the devices suffer from frequent connectivity
loss. To support seamless game play, a wireless client should re-establish a connection
in a reasonable time; otherwise, a special game design considering network reconnec-
tion patterns would be required. Therefore, understanding reconnection latency can
help exergame designers and developers deal with network connectivity problems. In
this study, we investigate the latency of re-establishing network connectivity in WiFi
2.4GHz and LTE protocols; 3G and WiFi 5GHz were excluded due to their poor perfor-
mance underwater.

3.2.1. Experimental Setup. Using the aforementioned testbed, we immersed a smart-
phone to a depth of 20cm and waited until it completely lost network connectivity. The
time taken for disconnection to occur varied widely (5 to 30 seconds). On disconnection,
we took the phone out of the water to mimic swimming strokes, which take 1.2 seconds
on average (SD: 0.67). We performed this measurement 20 times and recorded the
reconnection time as the interval between the time of lifting the phone out of the wa-
ter and the time of successfully exchanging a packet. To detect when the smartphone
client emerged from the water, the sensor readings from a barometer were logged,
using the significant pressure level changes at this point. In addition, we found that
LTE always assigned a new IP address after reconnection. Therefore, our measure-
ment software reinitialized the underlying transport sockets whenever a connection
was re-established with LTE.

3.2.2. Measurement Results. In Figure 9, reconnection times for WiFi 2.4GHz, LTE KT
Olleh, and LTE LG U+ are plotted. WiFi was found to have the longest reconnection time
(mean: 14.7 seconds, SD: 0.65). To find the major sources of delay for WiFi, we analyzed
the Android WiFi source code (i.e., Java framework and native process) and the Android
WiFi control module, wpa_supplicant, which runs in the background and handles WiFi
operations. The current implementation of 802.11 states that WiFi reconnection follows
a series of steps (i.e., AP scan, association, and DHCP), and those are triggered by a
periodic AP scan request. If the scan results, which are obtained by an AP scan event,
contain a preferred WiFi AP, the client automatically attempts to reconnect to that
AP. We found that the AP scan, association, and DHCP took 1,080.00ms, 141.1ms, and
1,892ms, respectively. An AP scan request is scheduled for every 15 seconds—that is,
the reconnection process will happen up to 15 seconds after disconnection takes place.
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Fig. 10. Mounting the smartphone on the arm using the waterproof armband.

Here, the major sources of delay were AP scan interval (up to 15 seconds) and DHCP
(1.8 seconds). To decrease reconnection time, we can handle these two delay sources
as follows: whenever disconnection takes place while swimming, we can immediately
reconnect to the previously associated AP by reusing a previously assigned IP address.
This method can be implemented by modifying wpa_supplicant. In our implementation,
the modified WiFi client performed scanning immediately after disconnection instead
of waiting for up to 15 seconds, and DHCP was omitted by reusing a previously assigned
IP address. This patch enabled us to reduce reconnection latency to below a second while
using Android. We note that our scenario is different from WiFi seamless roaming [Shin
et al. 2004; Eriksson et al. 2008]. With seamless roaming, disconnection takes place
when the distance from the currently associated AP becomes too great, and thus the
client tries to associate with better candidate APs nearby. In contrast, in our scenario,
a currently associated AP is still the best AP even if disconnection occurs, because we
assume that a swimming pool can be covered by a single AP, and disconnection results
from the severe channel conditions underwater, not due to distance from the AP.

In the LTE measurements, reconnection times between network providers were sig-
nificantly different. The mean reconnection latency of KT Olleh was 12.3 seconds (SD:
1.0), whereas that of LG U+ was 3.2 seconds (SD: 1.2). The maximum reconnection la-
tencies of KT Olleh and LG U+ were given as 14.1 seconds and 7.9 seconds, respectively.
Our data revealed that LG U+ immediately recovered LTE connectivity, whereas KT
Olleh always reconnected to 3G networks (first Universal Mobile Telecommunication
System (UMTS), then HSPA+) and continued to maintain 3G connectivity throughout
the current session, without switching to LTE. If there were no packet exchanges for a
device using KT Olleh (after the device was back above water), it then switched back
to LTE networks.

3.3. Network Performance in a Real Swimming Scenario

Thus far, we have presented the general performance of wireless networking technolo-
gies underwater. In this section, we present networking performance in a real swim-
ming scenario to determine whether wireless communication is possible underwater
and the influence of different swimming styles on network performance.

3.3.1. Experimental Setup. We measured RTT and PLR while performing four swimming
styles, namely freestyle, backstroke, breaststroke, and butterfly, using the same logging
software as in Section 3.1.1. We considered only 802.11g (with a Galaxy S4 Active) and
LTE LG U+ (with a Casio G’zOne Command 4G LTE); we excluded KT Olleh because
it had the longest reconnection latency. We asked a participant who had more than a
year of swimming experience and was capable of performing four swimming styles to
swim each style in 25m lanes four times, for a total of 100m. We had the participant
place the smartphone on the upper arm (Figure 10). We did this because measurement
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Fig. 11. Network performance measurements while swimming with WiFi (802.11g) and LTE (LG U+).

results showed that network connectivity can be sustained only up to a depth of 20cm.
To enable consistent wireless communication, a device should not be submerged too
deeply for a long time. We carefully reviewed the characteristics of swimming motions
and submersion patterns of each body part while swimming. We found that the back
and the abdomen are consistently immersed. For example, the back is immersed while
swimming backstrokes, and the abdomen is immersed while swimming the other styles.
In contrast, the arm and the wrist emerge (or nearly emerge) from the water during
the arm recovery phase for each stroke, providing opportunities for packet exchanges.
Therefore, we placed the smartphone on the participant’s upper arms.

3.3.2. Measurement Results. Figure 11 shows the cumulative distribution of RTT and
PLR values with respect to the different swimming styles. Overall, LTE showed better
performance than 802.11g. The mean RTT of LTE was shorter than that of 802.11g
(LTE: 320.63ms; 802.11g: 543.60ms). In addition, LTE did not have any notable packet
loss compared with 802.11g (LTE: 0.07; 802.11g: 0.58) due to its robust retransmission
mechanism.

We found that swimming styles greatly affected network performance. Swimming
breaststroke produced significantly longer RTT and higher PLR values for both
technologies than the other styles. In 802.11g, the mean RTT and PLR for swimming
breaststroke were 1,941.48ms and 0.89; in LTE, the mean RTT and PLR for swimming
breaststroke were 583.50ms and 0.21. On the other hand, swimming other styles
produced relatively higher network performance: in 802.11g, the mean RTT and
PLR were lower than 650ms and 0.52; in LTE, the mean RTT and PLR were lower
than 350ms and 0.21. These differences resulted from the varying water immersion
patterns for each swimming style. As shown in Figure 12, packets were transmitted
more rapidly as the depth of the upper arm was decreased. From a form standpoint,
a swimmer’s upper arm was consistently submerged when doing the breaststroke,
whereas it periodically broke the water surface when doing the freestyle. Thus,
swimming the breaststroke makes the channel conditions poorer than the other styles
and brings about a longer RTT value and notable packet loss. In our measurements,
we did not explore effects of personal characteristics on networking performance
(e.g., skill level and stroke habits), but we expect that such characteristics may have
significant impact on overall performance, and thus further investigation is needed.

4. SWIMMING ACTIVITY RECOGNITION

We devised a real-time swimming activity recognition module called StrokeSense to
adapt swimming activities into a social exergame. Among a variety of swimming ac-
tivities, StrokeSense detects stroke timing, swimming styles, and turns using multiple
sensors, including an accelerometer, a gyroscope, a magnetometer, and a barometer. In
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Fig. 12. RTT and pressure traces of LTE (LG U+) while performing a single stroke.

Fig. 13. Data processing flow of StrokeSense.

this section, we give an overview and list the requirements of StrokeSense. We then
elaborate on our algorithms for turn detection, swimming style recognition, and stroke
timing detection.

4.1. StrokeSense Overview

As shown in Figure 13, StrokeSense is composed of three submodules for turn detec-
tion, stroke timing detection, and swimming style classification. When a game begins,
sensor data from the onboard magnetometer, accelerometer, gyroscope, and barometer
are smoothed using a digital filtering scheme. Filtered magnetic field values are used
for calculating the current heading and detecting turn events. A swimmer’s arm pull
action (i.e., stroke timing) is detected by means of the peak detection technique, using
barometer signals. Whenever stroke timing is detected, StrokeSense classifies the cur-
rent swimming style using three-axis accelerometer and gyroscope data between two
consecutive stroke timing points, and it reports the classified swimming style and the
timing of the arm pull occurrence to the game logic.

Using multiparty communication and real-time game interaction, StrokeSense is
designed to satisfy the following two requirements:

—A user’s device must be secured on the upper arm to enable multiuser communication
via a wireless network. Other positions, such as the back, abdomen, and wrist,
were also considered. The back/abdomen is unsuitable, as it is completely immersed
during certain strokes. For example, the back is submerged with backstroke, and
the abdomen is submerged with most other stroke types. The arm/wrist, however,
emerges repeatedly from the water during any type of stroke. In our prototype, we
chose the upper arm for placement of the device on the candidates.
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—StrokeSense must provide highly accurate real-time recognition of turn events,
stroke timing, and swimming styles, as they are used as the game inputs. Prior
studies were limited to offline sensor data processing for the recognition of swimming
styles [James et al. 2004; Marshall 2013; Siirtola et al. 2011]. Furthermore, none
of those studies considered the upper arm for the smartphone location. StrokeSense
complements prior studies in that we detail real-time algorithms, report comprehen-
sive evaluation results, and demonstrate actual implementation in a multiplayer
game. The key challenges were (1) devising an effective way to detect different types
of turns (e.g., open turn or flip turn), (2) designing a robust algorithm for stroke
timing detection to provide sufficient interactivity, and (3) building a classifier that
best discriminates between different swimming styles.

4.2. Sensor Selection and Data Collection

We first explored what sensors should be used for data collection. As in the previous
studies, we used motion sensors, such as an accelerometer, a gyroscope [James et al.
2004; Lee et al. 2013; Marshall 2013; Siirtola et al. 2011; Slawson et al. 2008], and a
magnetometer [Lester et al. 2006; Junker et al. 2008]. Furthermore, we considered a
barometer to measure ambient pressure, which includes atmospheric pressure on the
free surface and hydrostatic pressure due to the weight of the water column (when
the device is underwater). The ambient pressure changes significantly with the the
depth of the water and very little with the height in the air. For example, a change
in the ambient pressure of 1 hectopascal (hPa) requires a change in depth of 0.01m
underwater but a change in height of 7.9m in the air. The sensing error of the barometer
is small (less than 0.2hPa) [Muralidharan et al. 2014], and thus it can be used as a
valuable information source for activity recognition underwater.

We collected data using the Casio G’zOne Command 4G LTE, a rugged Android
smartphone (OS version 4.0.3). The smartphone supports use of an LTE mobile network
and included IPX7 water resistance (covering water immersion up to 1m), as well as
various sensors, such as an accelerometer, gyroscope, magnetometer, and barometer.

We recruited 11 participants (1 female and 10 males), who were between ages 19 and
26 years from a campus swimming club. The swimming pool used for the experiments
had four 25m lanes and a depth ranging from 1.3 to 1.7m. Each participant was asked
to place the smartphone on the upper left arm using an armband and to swim four
lengths for each stroke type, eight round-trips in total. While the participants swam,
we collected data from the three-axis accelerometer, three-axis gyroscope, three-axis
magnetometer, and barometer, and recorded video clips to annotate activity tags for the
following swimming movements: turn, freestyle, butterfly, backstroke, and breaststroke.
We further refined the boundary data between tags as we investigated data traces
visually.

4.3. Turn Event Detection

When swimming in a pool, a swimmer makes a turn at the end of the lane to continue
swimming. The number of turns is generally used to track the distance that an individ-
ual swims. Therefore, detecting turning events help swimmers measure the amount of
exercise they perform. In this section, we introduce the core idea for detecting a turn
event and then illustrate our turn detection algorithm based on a heading calculation
technique using magnetometer values.

4.3.1. Turn Event: Change of Heading. As mentioned in Section 2.1, there are various
types of turns in swimming, which vary depending on swimming styles. Less-skilled
swimmers may just turn their back at the end of the lane. In general, a turn often
involves a complex series of movements, such as rotation, pushing, gliding, underwater
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Fig. 14. Sensor data traces before and after applying a low-pass filter.

kicking, and pull-out. Therefore, it is too technically challenging to recognize a turn
event itself. We instead simplified a turn event as a change in consecutive headings, be-
cause a swimmer’s body is rotated to the opposite directions after a turn has completed.

In a swimming scenario, swimmers mount a device on their upper arms, which means
that a magnetometer is not only tilted but also dynamically moving. Such conditions
make the magnetometer signals fluctuate rapidly; thus, estimating headings is an
error-prone task. We resolved this by (1) removing the high-frequency noises caused
by arm strokes and (2) estimating the heading of a device by transforming device
coordinates to global coordinates.

The first error reducing technique was easily achieved with a low-pass filter. Because
each turn event can occur every 10 seconds at best (the 50m freestyle swimming world
record is 20.26 seconds for a 2 × 25 m lane [Fina 2015a] and 20.91 seconds for a
50m lane [Fina 2015b]), our filter passes the signals over a period of 10 seconds (cutoff
frequency: 0.1Hz). As shown in Figure 14, filtered sensor data does not fluctuate rapidly,
so we assume that a device is stable.

To estimate the heading, we apply the TRIAD algorithm, which determines the
orientation (i.e., heading, elevation, and bank) by finding a rotation matrix with two
pairs of vector observations [Shuster and Oh 1981]. Let GD and BD be three-axis
acceleration and geomagnetic values measured by a device, respectively. We can then
find a 3 × 3 rotation matrix RD→I, which transforms a device’s coordinate system to an
intermediate coordinate system as follows:

RD→I = [
RD→I,1 RD→I,2 RD→I,3

]
, (1)

where

RD→I,1 = GD

|GD| , RD→I,2 = GD × BD

|GD × BD| , RD→I,3 = RD→I,1 × RD→I,2. (2)

Let GE and BE be three-axis acceleration and geomagnetic values in the geographic
coordinate system, respectively:

GE = [
0 0 g

]
, BE = [

0 m 0
]
, (3)

where g is the magnitude of the gravitational force and m is the magnitude of the geo-
magnetic field. Then we can find another 3×3 rotation matrix RE→I, which transforms
this coordinate system to the intermediate coordinate system as follows:

RE→I = [
RE→I,1 RE→I,2 RE→I,3

]
, (4)

where

RE→I,1 = GE

|GE| , RE→I,2 = GE × BE

|GE × BE| , RE→I,3 = RE→I,1 × RE→I,2. (5)
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Fig. 15. Illustration about three cases of predicted turn events (red: close; orange: tight; yellow: loose).

From those two matrices, RD→I and RE→I, we get the final rotation matrix, which
transforms the device coordinate system to the Earth coordinate system as follows:

RD→E = RE→IRI→E = RE→IRE→I
T =

[ r11 r12 r13
r21 r22 r23
r31 r32 r33

]
. (6)

We can convert the rotation matrix RD→E to the Euler angles, which depend on the
Y1 X2 Z3 convention. The heading ψ is given as follows:

ψ = atan2(r21, r22). (7)

We can then detect a turn by continuously monitoring significant heading changes.

4.3.2. Algorithm Design and Evaluation. Continuous three-axis geomagnetic field and
three-axis acceleration values were sampled at 50Hz and 100Hz, respectively. The
measurements were obtained by selecting SENSOR_DELAY_FASTEST setting in the
Android SensorManager class. Sampled values were filtered using a Butterworth low-
pass filter, which passes the signals over a period of 10 seconds (cutoff frequency:
0.1Hz). We then calculated heading values using equations described earlier. Our turn
detection algorithm found local maxima and local minima in the consecutive headings
for the most recent 7 seconds. If the differences between the local maximum and local
minimum were above a certain threshold, a turn event was reported. We used a time
lag threshold, during which turning events were ignored, to prevent erroneous and
duplicated detections. In our implementation, heading and time lag thresholds were
empirically set as 1.0rad and 12 seconds, respectively.

To evaluate our turn detection algorithm, we divided four cases of predicted turn
events: overall, loose, tight, and close (Figure 15):

—The overall case compares the number of predicted turns to the number of observed
turns.

—The loose case requires that a predicted turn falls within 8 seconds of the correspond-
ing observed turn.

—The tight case requires that a predicted turn falls within 4 seconds of the correspond-
ing observed turn.

—The close case requires that a predicted turn falls within the exact boundaries of the
corresponding observed turn.

In each case, we calculated precision value, the proportion of correctly predicted
turns against all predicted turns, and recall value, the proportion of correctly predicted
turns against all actual turns, using the precollected dataset mentioned in Section 4.2.
Table I shows the precision and recall values for each case. Overall, our algorithm
performed well when detecting the occurrence of turn events; we achieved over 85%
for precision and recall values in the overall case and loose cases. However, the method
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Table I. Evaluation Results of Turn
Detection Algorithm

Case Precision Recall

Overall 96.2% 100.0%
Loose 85.7% 90.0%
Tight 70.5% 74.0%
Close 27.6% 29.0%

Fig. 16. Description of a stroke timing.

was not suitable for reporting the exact timing of a turn; the close case showed much
lower performance. Our algorithm cannot support on-time turn detection because head-
ing values do not significantly change while making a turn; the differences between
consecutive heading values only differ greatly after a turn is completed.

4.4. Stroke Timing Detection

4.4.1. Robustness of the Barometer Signals. StrokeSense detects stroke timings in real
time by analyzing peaks in barometer signals, as well as their values and temporal
sequences, and it reports recently classified strokes, with stroke timing, to the game
logic. We employed barometer signals because they are (1) highly periodic along with
every stroke and (2) highly robust against stroke type and swimmer-specific differences.

Figure 16 clearly shows the periodic barometer signal during swimming. For every
single stroke, the swimmer’s arm completes a circle, drawing a semicircle in the air
with another semicircle underwater. Such periodic surficial transitions create clear
periodic cycles in barometer signals. As mentioned in Section 4.2, diving by every
centimeter depth increases the barometer output by 1hPa. We found that in most
cases, the local maxima of the barometer signal corresponded to the moments when
the swimmer was pulling the water strongly at the middle point of the underwater
semicircle. Interestingly, this is when swimmers exert a strong muscular force on their
arms; therefore, we can leverage this as a highly intuitive timing to provide auditory
feedback for each stroke.

In addition, barometer signals yield very little differences between stroke types when
compared to motion sensors, such as the accelerometer and the gyroscope. As shown in
Figure 16, the major reason for this robustness is that the signals are closely related
to the water depth, and detailed motions do not lead to significant changes in the
signals. Thus, regardless of the current stroke type of a swimmer, it is possible to apply
the same stroke timing detection method. This method is also robust against personal
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Table II. Evaluation Results of Stroke Timing
Detection for Each Swimming Style

Swimming Style Precision Recall

Freestyle 98.8% 100.0%
Backstroke 99.7% 99.7%

Breaststroke 87.3% 99.5%
Butterfly 98.3% 100%

differences in swimming motion, such as the angle of the arms and acceleration rates. It
is worth noting that stroke timing detection methods based on motion sensors [Siirtola
et al. 2011] require specific heuristics for each stroke type, thereby requiring prior
knowledge of the current stroke types. In this case, if the stroke-type classification
fails, the motion-based timing detection also fails.

4.4.2. Algorithm Design and Evaluation. In our experimental device, the CA-201L, with the
SENSOR_DELAY_FASTEST setting in the Android SensorManager class, barometer
signals were sampled at 33Hz, which is fast enough to provide rapid action detection.
To use the data that were only influenced by strokes and to ignore the atmospheric
pressure, we passed those signals that had a similar period of a single stroke using a
Butterworth band-pass filter—that is, a period of 1.5 seconds to that of 4 seconds, or
0.25Hz to 0.67Hz. From consecutive smoothed signals, local maximum and minimum
peaks were found, and every significant local maximum peak was reported as a stroke
timing. The significance was determined by establishing whether the value difference
between the recent local maximum and minimum peaks was above a certain threshold
(i.e., the pressure threshold). Furthermore, we ignored other significant peaks for a
certain amount of time (i.e., the time threshold) if previously significant peaks were
detected. This method is based on the observation that it takes a certain amount of
time to complete each stroke. We empirically set the pressure threshold to 2.5hPa and
the time threshold to 1.5 seconds, which yielded a sufficient detection performance for
playing the game. In particular, the pressure threshold of 2.5hPa was large enough
that we could ignore the 0.2hPa error mentioned in the prior work [Muralidharan et al.
2014]. To the best of our knowledge, this was one of the earliest attempts to employ a
barometer for motion detection.

We evaluated the performance of the proposed stroke timing detection method by
using the precollected dataset described in Section 4.2. We used the manually ground-
tagged stroke timing data obtained from videos. As shown in Table II, the detection
results are comparable to the state-of-the-art stroke counter described in Siirtola et al.
[2011]. Again, it should be noted that StrokeSense uses one common stroke timing
detection algorithm, whereas Siirtola et al. [2011] relies on multiple swimming style–
specific timing detection algorithms. In the game experience study, we also used the
module for extracting stroke timing to give participants immediate feedback and to
utilize the timing information as a meaningful game input.

4.5. Swimming Style Classification

To classify four types of swimming styles (i.e., freestyle or front crawl, backstroke
or back crawl, butterfly, and breaststroke), we designed different swimming style
classification algorithms by using two models, a hidden Markov model (HMM) and a
support vector machine (SVM). Here, an HMM is a stochastic model that is comprised
of sequences of observations and hidden states. HMM has been implemented in a
variety of areas, including protein structure prediction [Karplus 2009], handwriting
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recognition [Hu et al. 1996], speech recognition [Huang et al. 1990], and gesture
classification [Park et al. 2011]. We considered the HMM to test whether it is possible to
exploit the temporal correlation of swimming activities, such as rotation angle changes
for different swimming styles. An SVM is a nonprobabilistic classification model that
finds a separating hyperplane that best discriminates a training dataset. The SVM
has been used in a wide range of domains, such as activity recognition [Sadanand
and Corso 2012; Morris et al. 2014], speech turn detection [Jayagopi et al. 2009],
image classification [Chapelle et al. 1999; Lin et al. 2011], and document catego-
rization [Joachims 1998]. We elaborate on each swimming classification algorithm,
including preprocessing, feature extraction, and implementation. In addition, we show
the classification performances of these two algorithms, as well as the performance
change due to differences in swimming skill.

4.5.1. HMM-Based Swimming Style Classification. To perform each swimming style, swim-
mers must rotate their arm in a particular sequence. Thus, we can represent each
swimming style as a specific sequence of an arm’s rotation angles. Based on this idea,
our algorithm is composed of the following processes: (1) segmenting angular speed
data obtained from a gyroscope into the lengths of single stroke windows, (2) esti-
mating rotations for every timestep, (3) generating an observation sequence through
transforming rotations into a finite number of observations, and (4) building a left-to-
right discrete HMM classifier for each swimming style using generated observation
sequences.

Preprocessing and feature calculation. Our experimental device, CA-201L, reports
three-axis angular speed data obtained from a gyroscope every 10ms. We smoothed this
data using low-pass digital filters to suppress high-frequency noise. In our dataset, the
duration of a stroke ranged from 1.5 to 4 seconds. Thus, we used a low-pass filter to
remove the signals whose period was shorter than 1.5 seconds. We then segmented
consecutive data into the lengths of single stroke windows using the proposed stroke
timing detection algorithm. To estimate the rotation angles of every data point, we
employed a quaternion, which is composed of a four-dimensional vector (i.e., one real
and three imaginary parts):

q = (w, x, y, z)
= w + xi + yj + zk,

(8)

where

w, x, y, z ∈ R, i2 = j2 = k2 = i jk = −1. (9)

The quaternion representation has frequently been used to calculate rotations in three-
dimensional space, because it does not suffer from gimbal lock (the degeneration of the
degree of freedom) and can be utilized with faster computing speed and more efficient
memory usage than a rotation matrix representation. At every timestep, we integrated
one sample of three-axis angular speed data over time to estimate the magnitude
of the rotation angle, and converted each sample and its magnitude (i.e., axis-angle
representation) into a quaternion. Let ωt be a three-dimensional angular speed vector
at time t, and let ut be a unit vector of ωt at time t. Then a quaternion at time t, qt, is
given by

qt =
(

cos
|ωt|
2

, sin
|ωt|
2

ut,x, sin
|ωt|
2

ut,y, sin
|ωt|
2

ut,z

)
, (10)

where

ωt = (ωt,x, ωt,y, ωt,z), ut = (ut,x, ut,y, ut,z) =
(

ωt,x

|ωt| ,
ωt,y

|ωt| ,
ωt,z

|ωt|
)

. (11)
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For constitute quaternions over time, we represent the aggregated quaternion Qt, a
total rotation until time t, as follows:

Q0 = q0 = (1, 0, 0, 0)
Q1 = q1Q0

Q2 = q2Q1

...
Qn = qnQn−1.

. (12)

Generating observation sequences for HMM. In the next step, we transform aggre-
gated quaternions into a finite number of observations. To do this, we converted the
equally divided Euler angles into quaternions. For example, each Euler angle (i.e.,
yaw, pitch, and roll) can be equally divided into two parts: [−π, 0), [0, π ] for yaw and
roll, and [−π/2, 0), [0, π/2] for pitch. We then calculated a centroid for each interval
(e.g., −π/2 for [−π, 0)). Those centroids were converted into quaternions, which depend
on the Y1 Z2 X3 convention, as follows:

Q(ci) =Q(yaw, pitch, roll)
=Q(θ, φ,ψ)

=
(

cos
θ

2
cos

φ

2
cos

ψ

2
− sin

θ

2
sin

φ

2
sin

ψ

2
,

sin
θ

2
sin
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2
cos
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2
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θ
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cos
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sin
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(13)

where ci is the i-th centroid and Q(ci) is a quaternion conversion of ci. For every
aggregated quaternion, we calculated the index of the nearest quaternion centroid,
which was obtained from consecutive gyroscope data. The distance measure between
two quaternions, q1 and q2, is given by

d(q1, q2) = 1 − q1 · q2

= 1 − (w1, x1, y1, z1) · (w2, x2, y2, z2)
= 1 − (w1w2 + x1x2 + y1y2 + z1z2).

(14)

Finally, we generated an observation sequence that is composed of the indices of the
nearest centroids to each aggregated quaternion and then used to classify swimming
styles.

Building HMM-based classifiers. From the collected data described in Section 4.2, we
first generated a sequence of aggregated quaternions q = {qt}T

t=1 in the T -length of a sin-
gle stroke. We then chose k quaternion centroids Q(C) = {Q(ci)}k

i=1, which was obtained
from three equally divided Euler angles. We transformed the sequence of aggregated
quaternions into a sequence of observation symbols o = {ot}T

t=1. Using these observation
sequences, we defined an N-state n-th order left-to-right HMM λN,n = (A, B,�), where
A = {aij}N

i, j=1 is the state transition probability distribution, B = {bi(o)}N
i=1 is the output

probability distribution, and � = {πi}N
i=1 is the initial state probability distribution.
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Table III. Features Extracted for SVM-Based Swimming
Style Classification

Types of Raw Data Features

Accel-X, Accel-Y, Accel-Z, Accel-Mag, Min, Max,
Gyro-X, Gyro-Y, Gyro-Z, Gyro-Mag Mean, Std. Dev.

We trained each HMM with the Baum-Welch algorithm, which estimates the optimal
HMM parameters using iterative expectation-naximization (EM) steps [Welch 2003].
Our classifier included four HMMs (an HMM for each swimming style) and reported
the most likely swimming style based on a given observation sequence. We denote the
proposed classifier as follows:

M(C, N, n) = (C, λN,n, f reestyle, λN,n,backstroke, λN,n,butter f ly, λN,n,breaststroke). (15)

4.5.2. SVM-Based Swimming Style Classification. Our SVM-based swimming style classi-
fication algorithm was built through three steps: (1) segmenting sensor data obtained
from an accelerometer and a gyroscope into the lengths of single stroke windows,
(2) calculating and selecting features that best discriminate between swimming styles,
and (3) building an SVM-based swimming style classifier using a set of selected fea-
tures.

Preprocessing and feature calculation. We smoothed three-dimensional accelerom-
eter and gyroscope data using the same filter used by the HMM-based classifier
algorithm—that is, a Butterworth low-pass filter (cutoff frequency: 0.67Hz). For each
type of data, we added an additional dimension, magnitude, by calculating the root
mean square of the values from the three axes. The data were divided into windows
of single strokes using our stroke detection algorithm. From the four-dimensional data
(X, Y, Z, and magnitude for the accelerometer and the gyroscope) in each window, we
calculated features including the minimum, maximum, mean, and standard deviation.
In total, we extracted 32 features from the two sensors (Table III).

Feature selection. To remove irrelevant or redundant features, we ran a wrapper
subset evaluation algorithm for feature selection using the Weka Machine Learning
Toolkit 3.7 [Hall et al. 2009]. This algorithm selects a subset of features by estimating
the performance (e.g., accuracy, F-measure, or root mean squared error) of a target clas-
sification model using repetitive cross validation [Kohavi and John 1997]. In general, it
is the best method to evaluate features, although it has a relatively high computational
cost compared to other feature selection schemes [Hall and Holmes 2003]. We set the
F-measure as the target performance measure and selected an SVM with the linear
kernel function as the target learning algorithm, which has been frequently used in
the literature for activity recognition [Sadanand and Corso 2012; Morris et al. 2014].
Using the wrapper subset evaluation algorithm with the linear SVM, we selected a
set of 7 features from the initial 32 features. Table IV lists the selected features and
their information gains, a measurement for estimating each feature’s discriminative
quality [Quinlan 1993]. We used the selected features to classify a swimmer’s current
swimming style.

4.5.3. Implementation and Performance Comparison. We implemented two different swim-
ming style classifiers using open source libraries. An HMM-based classifier is based
on JaHMM 0.6.2, which is a Java-based HMM library [Francois 2010], and an SVM-
based classifier is based on liblinear 1.9.6, which supports fast classification of large
datasets with a linear SVM [Fan et al. 2008]. We then trained those two classifiers
using collected data, described in Section 4.2. For the HMM-based classification model
M(C, N, n), we tested a variety of settings to find parameters with the best performance
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Table IV. Selected Features from Wrapper
Subset Evaluation and Their
Information Gain (IG) Scores

Feature IG score

Gyro-Y_Mean 1.7808
Accel-X_Min 1.1577
Accel-Y_Min 1.0910

Gyro-Mag_Max 1.0318
Gyro-Mag_Mean 0.8343

Accel-Y_Max 0.7204
Gyro-X_Max 0.3541

Table V. Accuracy Comparison of 10-Fold
Cross Validation for an HMM- and an

SVM-Based Classifier

Swimming Style HMM SVM

Freestyle 96.6% 100.0%
Backstroke 98.7% 100.0%
Butterfly 93.7% 99.5%

Breaststroke 93.1% 100.0%
Average 95.5% 99.9%

and empirically set those parameters as follows:

N = 13
n = 2

C = {ci}k
i=1

= {(θ, φ,ψ)}k
i=1 for θ ∈

(
−2π

3
, 0,
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)
ci = cj ⇐⇒ i = j.

Table V shows the results of 10-fold cross validation for each classifier. Both classi-
fiers had greater than 95% overall accuracy, with the SVM classifier reporting slightly
better performance (SVM: 99.9% vs. HMM: 95.5%). The accuracy of our classifiers out-
performs previous methods used for swimming style recognition; in research by Siirtola
et al. [2011], a quadratic classifier using a wrist-worn accelerometer achieved 89.8%
accuracy, and a method using an upper back–worn accelerometer had an accuracy of
95.3%. We conjecture that the reasons for the higher accuracy of our results is the use of
a gyroscope sensor; a gyroscope is more effective than an accelerometer in monitoring
body movements, as most body movements involve joint rotations [Park et al. 2011].

We also investigated changes in the classification performance depending on the
swimmers. As with other physical activities, swimming involves various movements
and uses almost all of the muscles and joints in the human body, meaning that there is
great potential for differences between swimmers in practice. Therefore, we examine
the differences in swimming motions among swimmers by using a similar approach
to that of Reddy et al. [2010]. We built two model categories: swimmer-specific models
and leave-one-swimmer-out models. For the swimmer-specific models, we used only
one swimmer’s data for training and testing at a time. Each model built was tested
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Table VI. Accuracy Comparison Between Swimmer-Specific and Leave-One-Swimmer-Out Models for an
HMM- and an SVM-Based Classifier

Participant
Swimmer-Specific

Model
Leave-One-Swimmer-

Out Model Differences

P1 88.8% 93.0% –4.2%
P2 68.9% 92.3% –23.4%
P3 83.4% 66.4% 17.0%
P4 87.2% 92.9% –5.7%
P5 92.3% 97.1% –4.8%
P6 96.9% 76.1% 20.8%
P7 68.9% 84.7% –15.8%
P8 94.8% 97.2% –2.4%
P9 91.1% 83.9% 7.2%
P10 95.3% 95.6% –0.3%
P11 85.7% 89.7% –4.0%

Average 86.7% 88.1% –1.4%
(a) Accuracy comparison between swimmer-specific and leave-one-swimmer-out models for an

HMM-based classifier

Participant
Swimmer-Specific

Model
Leave-One-Swimmer-

Out Model Differences

P1 100.0% 100.0% 0.0%
P2 100.0% 100.0% 0.0%
P3 97.8% 96.9% 0.9%
P4 100.0% 100.0% 0.0%
P5 100.0% 100.0% 0.0%
P6 100.0% 100.0% 0.0%
P7 100.0% 100.0% 0.0%
P8 100.0% 100.0% 0.0%
P9 100.0% 100.0% 0.0%
P10 100.0% 100.0% 0.0%
P11 100.0% 99.4% 0.6%

Average 99.8% 99.7% 0.1%
(b) Accuracy comparison between swimmer-specific and leave-one-swimmer-out models for an

SVM-based classifier

via 10-fold cross validation. For the leave-one-swimmer-out models, the classifier was
trained with the data of all participants except for one, but it was tested with the data
from the swimmer who was not in the training dataset.

As shown in Table VI, swimmer-specific models showed slightly lower performance
with an HMM (swimmer specific: 86.7% vs. leave one swimmer out: 88.1%) and similar
performance with an SVM (swimmer specific: 99.8% vs. leave one swimmer out: 99.9%).
We further analyzed confusion matrices and data distributions to investigate the lower
performance of the HMM for swimmer-specific models. We observed that our HMM
classifier suffered from an underflow problem in swimmer-specific models. It appears
that the probability distribution was not sufficiently populated with limited training
data (collected per person), and a stochastic classification model does not perform well
under such conditions.

4.5.4. Differences Between Less-Skilled and Highly Trained Swimmers. We conducted a pilot
test with seven additional participants to verify the performance of our classification
model. The seven participants (seven males; L.P1 to L.P7) were university students who
were capable of performing all four stroke types, with ages ranging from 26 to 30 years.
The participants occasionally swam, but none of them swam on a regular weekly basis.
We expected this group to have a lower swimming skill level when compared to the
swimmers with regular training. We collected their swimming motion data similarly to
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Fig. 17. Differences of motion sensor signal between less-skilled and highly trained swimmers while per-
forming butterfly.

the method outlined in Section 4.2 and classified stroke types using each classifier in
Section 4.5.3. Surprisingly, the accuracy of the models decreased significantly, to about
50% at times, for certain participants.

To investigate the potential causes of the accuracy degradation, we examined the
confusion matrices. Our HMM-based classifier failed to discriminate freestyle and but-
terfly from the other stroke types (butterfly: 31.0%, freestyle: 76.7% vs. backstroke:
91.5%, breaststroke: 90.9%). The SVM did not classify butterfly and breaststroke well
compared to the results from freestyle and backstroke tests (butterfly: 52.9%, breast-
stroke: 60.7% vs. freestyle: 100.0%, backstroke: 99.2%). For both models, we found that
there are two types of confusion patterns: failure to distinguish butterfly from freestyle
and backstroke, and failure to distinguish breaststroke from backstroke. From this, we
realized that classification accuracy may be dependent on the difficulty of swimming
styles, based on the observation that freestyle and backstroke are generally easier to
perform with good form than breaststroke and butterfly. We collected the training data
from a campus swimming club, and our interviews with the club members informed us
that they usually participated in swimming drills several times a week. Although club
members’ skill levels were rather diverse (particularly among our participants), their
swimming skills were relatively high, and their motion patterns tended to be fairly
consistent with one another, due to the regular swimming drills. However, the addi-
tional participants swam as a hobby and thus were less-skilled swimmers compared to
the club members.

To confirm our idea that classification accuracy may be dependent on the difficulty of
the swimming style, we manually examined the motion dataset (i.e., the acceleration
and gyroscope samples) to determine why such classification errors occurred. After in-
specting the dataset, we found that the the acceleration patterns and rotation curves of
the less-skilled swimmers were somewhat different from those in the training dataset,
as shown in Figure 17. While swimmers are dragging up their arms, the arms of highly
trained amateurs rotate at a higher frequency and more quickly. In addition, highly
trained amateurs rotate their arm approximately 90 degrees to the front, a much more
defined arm angle than that of less-skilled swimmers. Although the original training
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Table VII. Accuracy Comparison of the Pilot Test Using a Swimmer-Specific Model and a
Highly Trained Swimmer Model

Less-Trained Swimmer Swimmer-Specific Model
Highly Trained Swimmer

Model

L.P1 59.2% 76.9%
L.P2 51.9% 72.6%
L.P3 82.7% 81.4%
L.P4 73.9% 76.0%
L.P5 82.9% 52.9%
L.P6 92.5% 67.7%
L.P7 85.8% 80.4%

Average 72.6% 75.6%
(a) Accuracy of the pilot test using a swimmer-specific model and a highly trained

swimmer model for an HMM.

Less-Trained Swimmer Swimmer-Specific Model
Highly Trained Swimmer

Model

L.P1 100.0% 51.4%
L.P2 100.0% 83.3%
L.P3 100.0% 71.4%
L.P4 100.0% 91.2%
L.P5 100.0% 68.5%
L.P6 100.0% 91.7%
L.P7 100.0% 90.0%

Average 100.0% 78.2%
(b) Accuracy of the pilot test using a swimmer-specific model and a highly trained

swimmer model for an SVM

data appeared to be highly consistent across different users, the dataset from the pilot
study did not clearly exhibit such patterns.

Table VII shows the classification results of each individual less-trained swimmer
(L.P1 to L.P7) with the model built using (1) a same less-trained swimmer’s data
(swimmer-specific model) and (2) 11 highly trained swimmers’ data (P1 to P11; highly
trained swimmer model). Our HMM-based classifier did not show significant differ-
ences between the swimmer-specific and highly trained models, whereas the SVM-
based classifier showed a significant performance increase in the swimmer-specific
model. In case of limited training data, such as the swimmer-specific models, the HMM-
based classifier showed lower classification performance, as stated earlier. On the other
hand, the SVM-based classifier can distinguish different swimming styles, even with
limited training data, as mentioned previously. The performance difference with the
highly trained swimmers’ models between two classifiers was not significant (3.2%).
Therefore, we conclude that the SVM-based user-specific models can cover more various
groups of swimmers, including less-trained casual swimmers. Assuming that a user’s
skill does not significantly change in a short time, collecting a dataset and building mod-
els can be done occasionally (say, once in a few months). To decrease the data collection
burden on the swimmer, a semiautomatic collection method using an audio guide would
be useful, such as a mobile application that tells a user to collect sensor data by per-
forming one lap for each stroke, which is a level of manual data collection that would
not be burdensome for casual swimmers. An alternative would be to employ a hybrid
technique, where a user-independent model (with SVM or HMM) is used initially and
then individual user data is collected and used to build the SVM-based classifier.

5. A CASE STUDY: MOBYDICK

We designed MobyDick as a case study, taking into account key human factors and
technical challenges when transforming swimming activities into game play. To put it

ACM Transactions on Sensor Networks, Vol. 12, No. 3, Article 17, Publication date: July 2016.



Designing Interactive Multiswimmer Exergames: A Case Study 17:27

briefly, MobyDick is a team-based action exergame pitting team members against a
huge underwater monster, Leviathan. As with popular multiplayer online games, mul-
tiple swimmers form a team and play MobyDick collaboratively, attacking Leviathan,
dodging the attack of Leviathan, and healing the wounded. Next, we outline the game
modalities and design.

5.1. Swimmer-to-Game Interaction Modalities

Game inputs. Swimming is a full-body exercise requiring highly coordinated and con-
tinuous motions of all four limbs. Therefore, swimming allows for only very small de-
grees of freedom when creating game inputs within the existing activity, and common
strategies adopted in ground-based exergames are inapplicable For example, dynam-
ically changing paces [Mueller et al. 2010; Park et al. 2012] or making additional
gestures [Ahn et al. 2009] during swimming may unbalance the swimmer. As a result,
we focused on the intrinsic swimming activities. We utilized two types of stroke action
information as game inputs: stroke timing and swimming style (freestyle, breaststroke,
backstroke, and butterfly). In addition, turn events were recorded to track swimming
histories. As described earlier, MobyDick senses those activities by means of the smart-
phone mounted on the swimmer’s upper arm with an antifriction armband.

Game outputs. We identified auditory output to be an appropriate choice for a
smartphone-based swimming game, as we could simply use waterproof wired ear-
phones. Note that alternative modalities, such as visual ones, would require special
devices like display-embedded goggles. We built a type of audio-only game [Yuan et al.
2011], which is unlike typical video games that use audio merely to provide additional
information [Ng and Nesbitt 2013]. MobyDick continuously communicates the game
progress, team members’ status, and interaction events through background music,
narration, and sound icons.

5.2. Game Design

Currently, MobyDick is designed to support four swimmers fighting together against
Leviathan. Each stroke type corresponds to a distinct action category in the game:
freestyle is for attack, breaststroke is for dodging, and backstroke is for healing,
whereas butterfly is for critical attack due to the higher level of mastery required
for this stroke. Each stroke constitutes executing a single action of the category cor-
responding to the particular stroke type. To increase user interactivity, we map each
stroke with its own sound icon (or “earcon”)—that is, two attack earcons for freestyle
and butterfly, one dodging earcon for breaststroke, and one healing earcon for back-
stroke. A player’s stroke events are broadcast in the background so that players have a
general awareness of other players’ presence (the volume of the sound from other play-
ers is lower than a user’s own sound). Furthermore, there is an in-game narrator who
continually describes game progress, team members’ statuses, and interaction events,
such as health point status, as well as who is currently being attacked by Leviathan.
Unlike existing exergames that typically use verbal communication to facilitate social
interaction, such as Jogging over a Distance [Mueller et al. 2010] and ExerLink [Park
et al. 2012], MobyDick employs various social awareness cues, such as the narrative of
the virtual avatar interactions and the stroke earcons of players.

Game flow. One round of the game lasts for 3 minutes, a length of time that was
chosen by considering the average casual swimmers’ stamina—that is, how long they
are able to swim continuously. For each 30-second turn, Leviathan randomly chooses
a swimmer and breathes fire at the swimmer in a constant cycle. While the victim is
swimming the breaststroke to dodge the attack of the monster, the other swimmers are
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free to attack Leviathan by using freestyle or butterfly strokes. To evade Leviathan’s
fire attack, a victim should synchronize his or her breaststroke cycles with Leviathan’s
firing cycles to be under the water surface at the very moment that the fire is breathed
out; otherwise, the victim’s health points would be deducted. When the victims have
“died”—that is, when their health points have reached zero or lower—they can revive
themselves by swimming backstroke for a certain number of strokes. The other non-
victim players may participate in helping to revive the dead player more quickly by
swimming the backstroke together. The team wins if all of Leviathan’s health points
are depleted within 3 minutes; they lose if either the time is up or everyone is “dead.”

Multiplayer collaboration with social awareness cues. MobyDick features a unique
mode of asymmetric multiplayer communication for collaborative game play, which is
different from two-way verbal communications between players in other collaborative
exercise games [Park et al. 2012] and nonverbal communications in three-dimensional
virtual environments [Manninen and Kujanpää 2002]. In MobyDick, each swimmer is
given no means of explicit outbound communication, either verbal or nonverbal. The
only information available to the game participants is the team-wide audio broadcast,
delivering the actions and status of Leviathan and each swimmer (designated by a
unique call sign, namely Alpha, Bravo, Charlie, or Delta)—this audio broadcast works
as social awareness cues [Erickson and Kellogg 2000]. When listening to the events
and progress along the game play, each swimmer is expected to perform strategic
actions based on his or her own decisions. For example, a swimmer, say Delta, is
under a concentrated attack from Leviathan, and her life is at stake. Having heard of
this status, the swimmer, Alpha, may make a strategic decision on his own. He can
continue freestyle strokes to deplete the remaining Leviathan’s health points, or he
can switch to the backstroke to keep Delta alive, as she is the most proficient butterfly
swimmer and thus is the most important attacker. Due to the lack of explicit outbound
communication, we expected that such silent and autonomous teamwork could provide
social fun, where players would be able to devise better strategies as they figure out
each other’s playing style and swimming competence.

Latency-aware game design. As illustrated in Section 3, users may face network con-
nectivity loss and be unable to exchange any status update messages, which are critical
for interactive game play. We therefore devised several design choices to yield user ex-
periences that are less sensitive to connectivity loss and long latency issues. First,
we deliberately hid the accurate number of remaining health points of Leviathan and
other swimmers and represented them only in quartiles—for example, “Leviathan has
less than 75% H.P.!” As described earlier, wireless communications suffer from delayed
transmission underwater. This technique allows the network packets to be updated in-
frequently and players not to be aware of delayed updates. Second, a MobyDick client
locally computes one’s own status change (e.g., death or revival), immediately notifies
the swimmer, and remotely synchronizes the change with the server (as is the case in
most interactive games). It would be annoying for the swimmer to notice latency in his
or her own obvious status changes. Third, a swimmer might temporarily suffer a loss
of connection that is not restored immediately. We observed that such an incident is
not highly likely, but it may occur during breaststroke or butterfly. To keep players in
the game during disconnection, their MobyDick clients tell them that they have been
“stunned” and recommend that they use freestyle or backstroke for rapid recovery.

6. IMPLEMENTATION AND USER STUDY

We conducted experiments with MobyDick on a group of swimmers in an actual swim-
ming pool. In the user study, we investigated the efficacy of our game design mechanics
to provide socially enriched swimming experiences.
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Fig. 18. Overall architecture of MobyDick.

6.1. MobyDick Implementation

As shown in Figure 18, the MobyDick implementation includes the following modules:
StrokeSense, game logic, and communication. We implemented the StrokeSense mod-
ule in Android (v4.0.3 API 15) using an SVM library called liblinear-1.94 [Fan et al.
2008]. For personalized model building, a new user initially follows an audio guide
whereby he or she is asked to swim a certain stroke for a given lap.

The game logic module manages the overall game flow through the game handler
and user interactions through the interaction manager. The game handler receives user
input from StrokeSense and tracks the current game status (i.e., attacking, dodging,
and Leviathan’s status). It also implements the details in overall game flows. Whenever
the interaction manager receives status changes, it delivers aural information, namely
game instructions, one’s own input, and other players’ input, to the user. It also provides
user interfaces for game manipulation (i.e., start/stop games). This includes disabling
screen touching events while users are swimming, as water is sensed by the capacitive
screen. A client’s current status message is reported to the server every 100ms, and
the server broadcasts state changes to all group members.

The communication module manages message exchanges. Since MobyDick requires
the timely delivery of small control packets, it uses the UDP transport protocol, which
is typically used in online game design. For each client-server pair, the communication
module implements reliable UDP packet transmission schemes. Depending on the
importance of the control packets, we classified the state messages into low and high
priority. High-priority messages are used to report critical status changes, such as the
death of Leviathan or a player, or the end of a game, whereas low-priority messages are
used to report other player activities, such as attack and healing. To achieve reliable
transmission, if a node fails to receive an ACK in 50ms, a message will be retransmitted.
Low-priority messages expire after 2 seconds, whereas high-priority messages do not
have an expiration time. The communication module also monitors wireless network
connectivity to inform the game logic of a connectivity loss event and to keep track of
a client’s IP address to handle any IP address change after reconnection.

6.2. User Study Design

We recruited eight participants from our campus online community, with the major
criteria being as follows: (1) the participants must have had more than 1 year of
swimming experience, (2) they must swim more than three times a week, and (3) they
must be capable of performing all four stroke types. Table VIII lists the participants’
demographic information. We conducted the study in a 25m, four-lane swimming pool
at a local university gym. The participants were divided into two four-member teams.
Each team played two rounds of games, with 10 minutes of intermission. Each lane was

ACM Transactions on Sensor Networks, Vol. 12, No. 3, Article 17, Publication date: July 2016.



17:30 W. Choi et al.

Table VIII. List of Participants

Team ID Age Gender Experience

1

P1 23 F 2 years
P2 20 F 4 years
P3 22 M 3 years
P4 23 M 5 years

2

P5 20 M 1 years
P6 20 M 1 years
P7 24 M 5 years
P8 22 M 2 years

exclusively used by a single swimmer at a time. For exit interviews, we conducted focus
group interviews followed by 1.5-hour one-on-one interviews directly after the games.
The video and audio of all interviews were recorded. Two researchers transcribed and
coded the interviews. We now discuss the major themes and findings of the study.

6.3. Findings

Dissociation from intrinsic swimming activity. All participants reported that the swim-
ming game was enjoyable. Specifically, we observed that most of the participants ex-
perienced certain degrees of dissociation from the activity of swimming. P1 stated the
following: “[When swimming without the game] usually it’s kind of boring . . . . My mind
wanders away but it often gets me out of balance. . . . [Playing the game] definitely took
such feelings away from me.”

Previous literature has reported that one’s dissociative state effectively reduces one’s
perceived exertion [Pennebaker and Lightner 1980] and leads to a mental disconnection
from painful sensory inputs [Morgan and Pollock 1977]. However, one participant (P6)
commented that paying excessive attention to the game resulted in a higher level of
exertion than usual experiences: “I used to pace myself to keep it mild, but this time it
was just way faster.”

Perceiving timely game responses. We found that six of the participants enjoyed the
immediate auditory feedback received from the game. In particular, P2 liked the exact
timing: “I enjoyed the sound of clashing swords. I could hear them right at the moment I
pull the water. . . . I really felt like my stroke was wielding the sword.” The participants
said that they could hear the sounds loudly and clearly. This may be attributed to our
design choice of setting the sound timing not to be at the moment that swimmers’ arms
hit the surface but rather when they pull the water, thus preventing a water splash
noise.

Keeping track of game status updates. MobyDick delivers extensive game-related in-
formation through aural messages. We found that when beginning a game, the swim-
mers could keep track of most information, such as game progress, the remaining
health points for themselves and Leviathan, and other swimmers’ statuses. However,
toward the end of a game, the participants tended to be exhausted and could not main-
tain a sufficient cognitive span to monitor other players’ activities. P5 recalled: “[At the
last part] I couldn’t listen to what others were doing. [I just] kept hitting Leviathan.”

Intuitive behavioral metaphor. The participants liked the mappings between stroke
types and in-game actions. P7 stated: “It makes good sense to me. . . . Swimming the
freestyle or butterfly seems like hitting the water. . . . Backstroke seems like lying on the
water and taking a rest.”

Socially enriched swimming experience. Even though MobyDick does not change
anything in the sense that the swimmers cannot speak or express themselves at all to
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the other team members, we found that the unique mode of collaboration in MobyDick
may create new feelings of bonding and team spirit among swimmers (e.g., real-time
interaction and sympathy with each other). P7 commented: “It cheered me up to hear
that Alpha and Bravo were attacking when I was attacking too. I felt we were the same
team indeed.” In addition, playing the game often changed the participants’ usual
swimming patterns. “Leviathan was nearly dead, but everyone but me was gone and
healing themselves. So I did a lot of butterfly. . . . It was really unusual for me. It’s so hard
and I don’t do that much while swimming alone.” Note that a previous work reported
that exercise-based games may result in higher level of exercise intensity [Park et al.
2012], and MobyDick newly showed a potential to promote exercisers to do a certain
style of workout (e.g., butterfly).

Autonomous and dynamic team play with social awareness cues. As expected ear-
lier in the game design, we found that the players dynamically change their tactics
by listening to the team-wide audio broadcast and making an individual decision on
what would be best for each other. One participant commented: “Bravo isn’t good at
backstroke. When he’s dead, I did backstroke together to get him back ASAP.” Note that
previous online game studies reported that there are simple forms of collaboration
between strangers or friends without explicit interplayer communication [Nardi and
Harris 2006]. However, we found that the current design of MobyDick has the poten-
tial to facilitate highly strategic collaboration between players, even without an explicit
communication channel between players.

7. RELATED WORK

Our work expands on earlier studies on exergame design, wireless networking perfor-
mance evaluation, and sensor-based swimming analysis. In the following sections, we
review each of these subjects in detail.

7.1. Exergame Review

As sensor and device technologies have advanced in recent years, creating new kinds
of exergames has been an active area of research. Typical exergame design involves
augmenting or visualizing existing sports activities. One way of doing this is to repur-
pose existing exercise equipment or develop new devices for physical activities that
can be used as game inputs, such as an arm ergometer [Guo et al. 2006], an interactive
treadmill [Ahn et al. 2009], a spirometer [Lange et al. 2009], a tangible ball [Kern
et al. 2006], and playful gadgets [Chang et al. 2008; Chiu et al. 2009; Lo et al. 2007].
Exergame Fitness Co.3 provides several types of exergame controllers, including game
cycles and interactive floor and wall systems. Allowing for remote participation in ex-
ercise activities to leverage social support and influence has been another widely used
mechanism for exergame design. Mueller et al. recently developed a set of exergames
known as Sports over a Distance, which use players’ physical actions directly for remote
sport play, for example, Jogging over a Distance, Remote Impact, and Table Tennis
for Three [Mueller and Agamanolis 2005; Mueller et al. 2009, 2010]. Sharing heart
rates allows remote exercise participants to exchange their workout intensity levels
[de Oliveira and Oliver 2008; Mueller et al. 2010; Nenonen et al. 2007; Stach et al.
2009]. Park et al. proposed an exergaming platform called ExerLink that allows
remotely connected participants to use multiple heterogeneous exercise devices for
game play [Park et al. 2012]. Our main contribution is to gamify swimming activities
and to design and evaluate an interactive game that considers multiuser coordination.

3http://exergamefitness.com.
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Readers can find more information about recent advances in exergames and their
design principles in Campbell et al. [2008] and Sinclair et al. [2007].

7.2. Wireless Networking in the Pool

LTE performance measurement has become a topic that is of great interest to the re-
search community. Huang et al. [2012] performed a comprehensive measurement study
on LTE networks and showed that LTE’s downlink/uplink throughput is much higher
than that of 3G. Their LTE network modeling revealed that selecting LTE-related
parameters, such as tail power, had a significant effect on energy consumption. LTE
displays significantly lower RTTs than those of 3G networks [Huang et al. 2013], but
researchers found that the TCP has various inefficiencies, such as undesired slow start,
and called for further research into developing LTE-friendly transport protocols.

Our work supplements these studies, as we considered rather extreme networking
environments, such as that of a phone being immersed under-water. We performed a
comparative study on WiFi, 3G, and LTE networks in laboratory and swimming pool
scenarios. Recent smartphones, such as the Galaxy S4 Active or the Casio G’zOne,
have begun to include waterproofing features, and waterproof smartphone cases are
commonly used in water theme parks (e.g., for taking photos). Our measurement results
provide valuable insights for novel application design with respect to water activities,
such as photo uploading, audio/video streaming, and interactive games.

Previous studies on underwater sensor networks have examined the use of radio com-
munications under-water [Lloret et al. 2012; Sendra et al. 2013]; however, the majority
of these studies have focused on using acoustic data transmission. Lloret et al. [2012]
experimented with wireless communication between two submerged wireless nodes
and showed that significant packet loss (more than 30%) occurred when the nodes
were approximately 15cm apart. Our experimental results regarding communication
between a submerged node and a node in the air are consistent with these results. Jiang
and Georgakopoulos [2011] studied the effect of the frequency band on underwater Ra-
dio Frequency (RF) signal propagation. They found that propagation loss increases
significantly in high-frequency bands (above 100MHz). Lloret et al. [2012] analyzed
the performance differences between different WiFi channels. Our work differs from
these studies in that our experimental condition involved wireless communications be-
tween a node in the air and a node in the water. We conducted a comparative study on
three popular wireless networking technologies, namely WiFi, 3G, and LTE, by system-
atically analyzing delay, packet loss, and network reconnection, as well as conducting
a supplementary measurement study in an actual swimming scenario.

7.3. Sensor-Based Swimming Analysis

Performance analysis in swimming has mostly been based on offline, manual process-
ing of recorded images to derive quantitative and qualitative measures of performance.
Researchers in sports science and human kinematics have recently examined how on-
body motion sensors can be used as an alternative to image analysis, providing valuable
insights into automatic recognition. James et al. [2004] analyzed the acceleration data
of elite swimmers using a back-mounted accelerometer. Similarly, Slawson et al. [2008]
showed that acceleration data can provide useful information for performance analy-
sis. As the first system of its kind, the aim of SwimMaster was to provide a fine-grain
assessment of swimming by extracting swimming parameters, such as velocity, arm
strokes, body balance, and body rotation [Bächlin et al. 2009]. To enable fine-grain mon-
itoring, SwimMaster uses three motion sensors: a wrist sensor, a lower back sensor, and
an upper back sensor. The major limitation of this system is that it only supports offline
data analysis and does not recognize different swimming styles other than freestyle.
Along the same line of research, Siirtola et al. [2011] used two body-worn sensors,
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one on the wrist and one on the back, for the automatic classification of strokes, and
they showed that accurate classification is possible with a back-mounted motion sen-
sor. Although this study considered three swimming styles, it was largely based on
offline machine learning and did not provide any insights into real-time detection and
interpersonal skill differences. Recently, Marshall [2013] and Lee et al. [2013] demon-
strated that smartphones can be used as a platform for supporting stroke sensing and
real-time feedback, but they did not provide any detailed algorithms in their study.

Our work significantly extends earlier studies in the following ways: (1) we used off-
the-shelf smartphones mounted on the upper arm, where motion data is much noisier
than in other locations; (2) we proposed real-time activity detection algorithms that
can accurately detect four popular swimming strokes; and (3) we showed that individ-
ual skill differences have a significant effect on recognition performance, particularly
among recreational swimmers, as well as the fact that personalized machine learning
can significantly improve recognition accuracy.

8. DISCUSSION

We now present the practical implications of our main findings and discuss the limita-
tions of the research. The discussion is organized into the following sections: activity
recognition (Section 8.1), network research (Section 8.2), game design implications (Sec-
tion 8.3), application design opportunities (Section 8.4), and limitations (Section 8.5).

8.1. Swimming Activity Recognition

From our experiments, we showed that the smartphone barometer provided an accu-
rate estimation of water depth. Previously, it was shown that atmospheric pressure
(measured in the air) could be used to predict floor levels [Muralidharan et al. 2014] or
to detect user activities such as idling, walking, and driving [Sankaran et al. 2014]. In
our work, we systematically showed that ambient pressure significantly changes with
water depth, especially compared to change with height in only the air. For example,
a change in the ambient pressure of 1hPa requires a change in depth of only 0.01m
underwater or a change in height of 7.9m in the air. Another potential application is to
detect water emersion events for sensor data analysis (or to segment sensor data based
on the events). There are significant pressure changes at the time of water emersion,
and we can easily find emersion events when visually examining the dataset. Likewise,
we can automatically detect the event by tracking the ratio of pressure changes over
time, as there will be significant pressure increment at the time of water emersion.

This work provides highly accurate online recognition of turn events, swimming
styles, and stroke timing using off-the-shelf smartphones. Our recognition procedure
can be extended to be used for recognition of other water-based activities, such as
aquarobics. Recognizing activities that involve water emersion can potentially benefit
from detecting water emersion events. Unlike land-based exercises, water resistance
makes physical activities more challenging. We showed that a user’s skill level in the
water must be carefully taken into account. It is difficult to accurately classify less-
skilled users’ activities even when using sophisticated models based on temporal se-
quences. Instead, we showed that a user-specific model can be an excellent alternative,
resulting in highly accurate classification results.

Recently it has become increasingly popular to track personal data using smart
devices, such as the Fitbit Flex and Basis B1. This interest has been extended to en-
compass water-based activities. Our algorithm suite can be easily extended for users to
track their own swimming activities. One interesting direction for future work would be
to release a self-tracking swimming application in the application store and to conduct a
large-scale, in-the-wild test on swimming activity recognition. The key challenge would
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be developing a full-service suite and addressing practical concerns such as device het-
erogeneity and usability issues, which can be addressed by leveraging user-specific
modeling (or device pattern mining) and a user-centered, iterative design process.

8.2. Network Research

We studied the networking performance of popular wireless technologies, namely WiFi,
3G, and LTE, in the laboratory, as well as in actual swimming scenarios. Our results
confirm that water immersion has a significant effect on end-to-end latency. We found
that LTE was more robust than the other considered wireless networking technolo-
gies under our experimental conditions. Despite the robustness of LTE links, when
poor channel conditions were prolonged, bulk packet loss was observed; however, the
likelihood of such incidents occurring was much lower than for WiFi. When network
disconnection occurred, we found that it took a considerable amount of time to re-
establish connectivity. In addition, water immersion patterns differed widely across
different stroke types while swimming, which contributed to the RTT variations and
PLR. Since water depth is related to networking performance, it is possible to use
barometric sensing to estimate channel conditions and schedule packet transmissions.
For example, one interesting network research application is to enable real-time audio
streaming for swimming environments (e.g., delivering an instructor’s voice messages
in real time or listening to real-time audio/video broadcasting).

We mainly used Casio’s rugged smartphones in our experiments. Two smartphones
were damaged during the experiments, and we propose a few possible reasons. The rub-
ber isolators sometimes become loose, possibly as a result of forceful body movements.
Moreover, waterproof headset wires sometimes interfere with swimming strokes,
pulling out the headset. Given that such events may occur during various aquatic
activities, any rugged phone design should take these problems into account.

8.3. Game Design Implications

When designing a social exergame for swimming, one should carefully consider end-
to-end latency, reliable transport, and network connectivity issues when designing
game content and implementing interdevice communications. For example, the RTT
constraints will help designers understand the degree of interactivity that a given
networking technology can provide and will guide them to design game content accord-
ingly. Although typical data exchanges are done in UDP for game development, some
important game messages should be reliably delivered to the players. The data transfer
layer of the game client/server should consider packet loss patterns. Furthermore, in
swimming scenarios, connectivity loss may happen occasionally, which is quite rare
with over-the-air networks. Likewise, a designer should consider how to handle long
periods of connectivity loss during a game.

8.4. Application Design Opportunities

8.4.1. Interactive Coaching. Our work adds to the body of work on interactive coaching.
It is possible to design intelligent workout programs; a simple approach is to ask users
to follow existing exercise regimens [Marshall 2013] or provide customized feedback
for posture correction [Bächlin et al. 2009]. Beyond such intelligent coaching, we can
explore the possibilities of enabling real-time interactions between coaches and swim-
mers via wireless networking technologies. For example, sensor data can be processed
in real time, and the results can be immediately sent to the coaches, who can give
specific feedback to the swimmers (e.g., voice and visual feedback).

8.4.2. Remote Cheering. In recent years, HCI communities have designed various ap-
plications that facilitate interactions between exercisers and remote supporters. For
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example, HeartLink allows runners to broadcast their physical and psychological states
(e.g., speed, heart rates) and online supporters to send cheers to the runners via vibra-
tion [Curmi et al. 2013]. With RUFUS, supporters can send multiple signals such as
“Go Go Go” and “I’m thinking of you.” These signals are delivered to the runner’s wrist-
watch (encoded in different colors for intuitive recognition while running) [Woźniak
et al. 2015]. Similarly, we consider the possibility of remote cheering applications for
swimming activities (e.g., triathlon, masters’ swimming).

8.4.3. Exercise Game Design. We demonstrated that swimming activities can be used as
game input and designed an application called MobyDick that allows multiple swim-
mers to collaborate and hunt down a virtual monster. Our preliminary experiences
with MobyDick resulted in several game design implications and provided insights
into practical mobile software design for aquatic environments. As mentioned by our
participants, MobyDick’s system of sharing user information has a major limitation in
that users tend to disregard other players’ information when they become tired. One
way of mitigating this problem is to support pairwise collaboration and competition as
part of the game. If a user is paired with another user and asked to collaborate, we
expect that they may feel less burdened since they do not need to track all of the other
players’ statuses. Exercise intensity should be carefully coordinated into the game
logic. In certain cases, our participants had to perform a series of strokes that require
significant physical effort, which could lead to physical injury or burnout. Since it is
possible to monitor a swimmer’s heartbeat using a special headset device, it is possible
to incorporate heart rate information into the game design. In turn, heart rate infor-
mation can easily be translated into exercise intensity [Borg 1982]. This would allow
the game logic to automatically adapt to a swimmer’s changing conditions.

In general, when designing game content, we can leverage Schell’s game design
mechanics [Schell 2008]: (1) virtual space for game play (e.g., two/three dimensional,
zero dimensional); (2) objects (e.g., characters, props, scoreboards), attributes of the
objects (e.g., current position in the game space, min/max speed), and states (e.g.,
current speed, current position); (3) player actions that can be defined by mapping
physical movements to virtual movements; (4) rules that define the space, the objects,
the actions, the consequences of the actions, the constraints on the actions (operational
rules and game states), and the goals; and (5) skill differences (physical/cognitive skills).
With these characteristics, it is interesting to consider the key findings of user studies
that attempt to understand group fitness swimming and design constraints. First,
physical movements in swimming (e.g., stroke/turn and timing) must be mapped into
a virtual space (or virtual movements). Second, it is important to design coordinated
virtual movements that can facilitate social interactions (e.g., altering game states such
as health point and position). In particular, game designers should consider designs
that are less prone to connectivity loss and long latency issues. Third, lap swimming
patterns and workout guidelines can be incorporated when dynamically generating
workout schedules (e.g., style combination/duration, required physical efforts) [Park
et al. 2012]. Fourth, players’ physiological state, such as heart rate, can be considered
to encourage balanced exertion [Sinclair et al. 2007].

8.5. Limitations

Our networking performance measurement was limited to two handsets and two oper-
ators. Given that the network parameter configurations and policy settings of cellular
operators vary widely, the generalizability of this work is limited. Nonetheless, the
results obtained with our experiments are to an extent consistent with the measure-
ment results for U.S. operators [Huang et al. 2012, 2013], and we expect that similar
behaviors may be observed in other operators’ networks.
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For activity recognition, we tested the models with the dataset obtained from only 11
participants due to the difficulty of hiring individuals who were capable of completing
the experiments. Moreover, it was possible that our model training could have exhibited
gender bias. To evaluate whether this was the case, in one experiment we left the one
female participant out, and trained and tested the model. However, we found that
there was still a very high level of accuracy, indicating that gender bias may not
have had any influence. Although we need to test our systems with a greater number
of female participants, we hypothesize that skill is more important than gender in
obtaining the desired results. In our dataset, skilled users tended to show similar
motion patterns, whereas less-skilled users showed less patterned motion behavior.
Our personalized models also need to be tested with more people to validate their
accuracy across different individuals.

Our preliminary user study included only a small number of participants (n = 8).
After several iterations of the game design, we will conduct an experiment with 5 to
10 groups of three to four users each and draw more certain conclusions from both
qualitative and quantitative data analysis.

ELECTRONIC APPENDIX

The electronic appendix for this article can be accessed in the ACM Digital Library.
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