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A B S T R A C T

Smartphone cameras are increasingly used for document capture in daily life. To understand user behaviors, we
performed two studies: (1) an online survey (n=106) to understand general smartphone camera usage behaviors
related to information capture, as well as participants' experiences of orientation errors, and (2) a controlled lab
study (n=16) to understand detailed document capture behaviors and to identify patterns in orientation errors.
According to our online survey, 79.30% of the respondents reported experiencing orientation errors during
document capture. In addition, our lab study showed that more than 90% of landscape capture tasks result in
incorrect orientation. To solve this problem, we systematically analyzed the user behavior during document
capture (e.g., video sequences and photographs taken or hand grip used) and propose a novel solution called
ScanShot, which detects document capture time to help users correct orientation errors. ScanShot tracks the
direction of gravity during document capture and monitors the users rotational or tilting movements of to
update changes in orientation automatically. Our results confirm that document capture with 93.44% accuracy;
in addition, our orientation update mechanism can reduce orientation errors by 92.85% using a gyroscope (for
rotation) and 81.60% using an accelerometer (for micro-tilts).

1. Introduction

People use the built-in camera on their smartphone for various
reasons, ranging from personal reflection to social experiences and
functional tasks (e.g., Okabe, 2006; Gye, 2007; Lux et al., 2010).
Research has shown that camera phones are often used for capturing
functional images such as printed images or writing for later reference
(Kindberg et al., 2004, 2005). Our work considers this type of
document capture which is increasingly occurring in our daily life
(e.g., capturing magazine or newspaper articles) (Brown and Sellen,
2000). While fixed scanners are still widely used in office settings,
smartphone-based document capture allows users to instantly capture
documents at anytime and in any location, which has dramatically
influenced our document capture behaviors and the management of
personal information (Doermann et al., 2003).

Document capture is typically done by configuring the angle of the
smartphone camera into a top-down (or bird's-eye) view. However, as
some readers may have experienced, orientation errors are often found
in the captured images. We discovered that this type of problem
originates from the inferred orientation of the phone being different

from the capturing orientation of the user (hand posture). Recent
smartphones have four orientation modes in a 2D space (just as in a
picture frame on a wall), namely, portrait, upside down, landscape left
(rotating the device to the left), and landscape right (rotating the device
to the right), as shown in Fig. 1. For a given capturing orientation, there
are three incorrect modes resulting in orientation errors during
document capture from a top-down angle.

We began our study by conducting preliminary studies including
online survey (n=106) and an in-lab experiment (n=16) with the goal
to understand extensively the document capture behavior as well as the
orientation errors. The research questions for each studies are 1) to
investigate of real-world user experiences of capturing information
using a smartphone camera from the online survey, and 2) to under-
stand how people captures information using smartphone camera with
analysis of the recorded video and sensor data from the in-lab
experiment. The online study provides overall picture of contexts in
which smartphone users captures information including documents.
The findings are differentiated from prior works in that it studies real-
world cases where smartphones are ubiquitous and is specific to
information capturing. The in-lab experiment systematically shows
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how people captures the information in terms of hand grips, behavioral
sequences with the details of orientation errors which turned out to be
more severe in landscape mode.

Our video analysis of document capture during the in-lab experi-
ment helped us propose ScanShot, a novel method for detecting
document capture. Our approach is composed of two steps. First,
ScanShot detects a document capture (when the body of phone is
placed parallel to the ground) by monitoring the gravity direction using
an accelerometer. For the second step, if a document capture is
detected, ScanShot then attempts to update the orientation changes
automatically. To achieve this, we proposed two different approaches.
One approach is to detect rotation events by analyzing the recorded
gyroscope data. When a phone is turned on (or a camera app is
launched), it continuously records the gyroscope data. As soon as a
document capture is detected, it examines the recorded gyroscope data
to check whether any significant rotation changes previously occurred.
Another approach is to infer the current orientation by observing the
users micro-tilting behavior of the device while capturing a document.
As the user holds their phone parallel to the ground, it is likely that they
will tend to tilt inwards slightly (because the user will try to see the
screen), a phenomenon we call micro-tilting. We previously showed
that micro-titling behavior can be captured by monitoring the accel-
erometer and applying a machine learning model. To validate the
efficacy of ScanShot, we carefully designed our algorithms and config-
ured their parameters. Our evaluation showed that document capture
moments can be detected with accuracy of 92.5% and automatic
correction achieves accuracy of automatic rotation achieves accuracy
of 92.85% (gyroscope) and 81.60% (accelerometer).

The key contributions of this paper are summarized as follows:

• We conducted an online survey (n=106) in order to investigate real-
world user behaviors for capturing information using a smartphone
camera and their awareness on the orientation issues.

• We performed an in-lab experiment (n=16) so as to study the
detailed user interactions such as hand grips, behavioral sequences
including video and sensor recordings.

• Based on the previous in-lab experiment, we describe a technique
devised for inferring the user's document capture intention using an
accelerometer. Our method can fairly precisely identify a document
capture with an accuracy of 92.50%.

• We propose two methods for correcting orientation errors that occur
during document capture when using a smartphone camera. The
first method fixes the orientation errors by tracking the user's
rotational movement using a gyroscope. The second method moni-
tors the user's tilting behavior at the time of document capture to
infer the correct orientation mode.

• We discuss several important issues including the generalizability of
our algorithm and its integration into existing systems. In addition,
we discuss practical design implications such as the design of
context-aware services for document capture, investigating diverse
hand grip positions for mobile interaction design, and increasing the
awareness of viewfinder UI indicators.

The remainder of this paper is organized as follows. First, we start
with a thorough review of related studies in Section 2. In Section 3, we
then describe preliminary studies conducted to understand user
behaviors regarding document capture using a mobile phone. Based
on the insights acquired from the previous user study, in Section 4, we
describe the design of ScanShot, which corrects erroneous orientations
by monitoring the gyroscope and accelerometer sensors. In Section 5,
we describe the performances of the two proposed methods. In Section
6, we discuss the generalizability and integration issues and suggest
several practical design implications. Finally, we provide some con-
cluding remark in Section 7.

2. Related works

2.1. Document capture using a camera

As the quality, accessibility, and functionality of digital devices
improve, such tools are increasingly being used for information capture
and storage. Brown and Sellen (2000) investigated the use of informa-
tion capture in work settings to understand the motive and reasons
behind the use of digital cameras for alternative purposes. They asked
two groups of people in a workspace environment to capture any
kinds of information and document-based information respectively,
and interviewed them regarding what was captured and why the
information was captured. They drew capture taxonomy which consists
of 10 categories in order to explore design possibilities of new
information capture devices. This work proposes the idea that cameras
are taking on more functions beyond their original intended use in
photography, especially for document capture and storage. However,
their work was confined to an office environment; therefore, it is
necessary to expand the study of information capture behavior to more
naturalistic setting.

Most commonly, paper documents and marks on paper, such as
hand-written notes are digitally saved using cameras. Kindberg et al.
conducted an in-depth study to describe the intention and pattern of
use of camera phones. In addition to typical photographs of people,
cameras integrated with cell phones are often used to capture images of
pages from books, screens, and writing on paper by interviewing actual
users of camera phones (Kindberg et al., 2005, 2004). They also
provided general statistics of camera phone use, and taxonomy of
reasons for capture; however, their focus was on general photos, not
photos for information capture. Ahmed et al. (2013) proposed a
method to automatically generate camera captured document images

Fig. 1. Erroneous orientation problems when capturing a document using a smart-
phone.
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because the dataset of document captured using a camera is expensive
to collect.

2.2. Device orientation inference methods

Recent smartphones typically use gravity-based screen rotation
algorithms (e.g., using an accelerometer), which assume that the users
are standing or sitting upright while interacting with the device in their
hand. That is, for inferring the orientation, the algorithms mainly
consider only two axes (X and Y axes) of the gravity vector. However,
the orientation inference fails to work properly if the smartphone is
close to the plane parallel to the ground (e.g., taking a top-down shot,
or placing the phone on a table), i.e., when the X and Y axes of gravity
are close to zero. If we rotate the phone parallel to the ground while
taking a top-down shot, the inferred orientation of the phone will
remain the same, and thus, an erroneously inferred orientation will be
obtained. According to a recent survey of user experiences regarding
smartphone orientation, users reported three types of failures in an
orientation inference; “lying down on one side,” “placing the device on
a flat surface,” and “lying down while facing up” (Cheng et al., 2012).
The orientation errors occurring during document capture are very
similar to the “placing the device on a flat surface,” but occur while the
phone is in the user's hands (not on a surface).

To the best of our knowledge, none of the earlier studies investi-
gated the erroneous orientation problem in document capture system-
atically. Instead, researchers have mainly focused on studying how to
prevent unwanted screen rotations when users change their body
posture (e.g., lying down). We classified techniques related to auto-
matic orientation inference into the following categories and discuss
their limitations herein.

2.2.1. Gravity-based device orientation inference
Hinckley et al. (2000) proposed portrait/landscape display mode

detection using a tilt sensor or two-axis accelerometer. The underlying
ideas here are that users naturally tilt their device for device rotation
changes (left/right, forward/backward), and sensing this behavior
allows for automatic orientation inference. In their visual illustration
of device orientation, the authors introduced a Flat range in which both
tilt angles of the device fall within ±3 ° where no orientation changes
are triggered. When the user places the device on a flat surface, a “put-
down problem” arises as the device's tilting angle falls into the Flat
range. In this case, the authors simply set the mode as the most stable
recent orientation when the phone entered the Flat range. As shown
later, this problem is similarly observed in document capture tasks,
e.g., posing a top-down shot by moving the camera lens attached on the
back of the device toward a document; the only difference here is that
the user lifts the phone into the air to capture a document. In this case,
users can freely rotate their phones to capture the documents correctly
(for example, in landscape or portrait modes). As with the earlier work
described above (Hinckley et al., 2000), the use of the previous
orientation mode may cause orientation mismatch problems.
Consequently, traditional gravity-based orientation systems do not
work well for document capture.

Kunze et al. (2009) presented a method to infer the horizontal
orientation of a mobile device carried in a pocket by processing the
accelerometer signals when the user is walking. This method extends
Mizel's approach (Mizell, 2003) in inferring horizontal and vertical
directions. Accelerometer signals are projected onto the plane perpen-
dicular to the gravity direction, and the first principal component
values of the projected points are integrated to infer the horizontal
orientation. This approach is not applicable to our document capture
scenario because our work requires orientation sensing while the
device is near the horizontal plane (angles toward earth's gravity).

2.2.2. Grasp-based device orientation inference
Cheng et al. (2013) explored how well a grasp can be used to infer

the screen orientation by implementing a phone-sized grasp sensing
prototype using 44 capacitive sensors attached to the back of a mobile
device. The authors demonstrated its usefulness by prototyping a
touch-sensor based phone case (achieving an inference accuracy of
80.9%), proving that the way in which the device is grasped is a good
indicator of its orientation sensing. Lee and Ju (2013) developed a
similar approach using three small, thin sensors). Wimmer and Boring
(2009) proposed HandSense which employs capacitive sensors for
detection when touched, squeezed, or held against a body part. Their
machine learning algorithm is also capable of detecting which hand is
holding the device. However, these methods are limited in that they
require external sensors and grip postures for document capture are
much more diverse (according to our user behavior study). Goel et al.
(2012) built GripSense to infer hand postures (e.g., one- or two-handed
interaction, and the use of the thumb or index finger) and the amount
of pressure using built-in smartphone sensors such as screen-touch
sensing, motion sensing, and built-in smartphone actuators such as
vibration motors. Although inferring hand postures and pressure levels
can provide valuable information regarding the inference of document
capture and possibly correcting orientation errors, it is difficult to
consider diverse capturing postures and infer the user's intention and
correct orientation.

2.2.3. Computer vision based device orientation inference
Cheng et al. (2012) proposed iRotate which takes advantage of the

front camera to detect the face orientation. This method is not
applicable to our problem because the user's device is generally parallel
to the document on a desk (flat plane), and thus the user's face cannot
be captured consistently at this camera angle. In addition, their method
is not applicable for devices without a front camera such as a digital
camera. Alternatively, we can use optical character recognition (OCR)
to automatically detect a document's orientation (Kwag et al., 2002; Lu
et al., 2007; Le et al., 1994; Hinds and Fisher, 1990). However, its
performance is heavily influenced by the context (e.g., font, hand-
writing, language, and light conditions), and it poses significant
processing overhead when compared to motion data processing.
Furthermore, our algorithm can cover broader situations such as
capturing documents without characters in which correct orientations
cannot be identified with computer vision based approaches.

3. Preliminary studies

3.1. Methodology

To understand user behaviors, we performed two user studies: (1)
an online survey to understand smartphone cameras usage for
information capture and participants' experiences of orientation errors,
and (2) a controlled lab study to understand detailed document capture
behaviors and to identify patterns of orientation errors.

3.1.1. Online survey design
We designed an online survey in order to investigate real-world

user experiences of capturing information using a smartphone camera
in addition to users' awareness of orientation issues. To encourage
survey participation, we randomly selected a portion of the participants
and compensated them with a gift certificate equivalent to 9 USD. The
respondents were recruited from an online community of university
students.

The main purpose of this survey study is to understand the
frequency of smartphone camera use for information capture and the
information that is captured in real-world situation.

We began by asking general questions on smartphone camera use
for information capture purposes including experienced orientation
errors while taking document photos (see Table 1). We clarify the
questions that are difficult to understand by running the survey
internally within our research team prior to the actual distribution of
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the online survey. In addition, to help users understand the meaning of
erroneous orientation issue, we also showed the participants photos of
correct case and incorrect case. To investigate the information that
people captured, we additionally asked respondents to report the
photos they had taken for information capture in the last three months
by reviewing their photo gallery app. They used text boxes to provide
brief context on the information captured for up to 5 photos. We
applied affinity diagramming which is commonly used technique to
find categories on the collected data (Beyer and Holtzblatt, 1997). Two
authors printed out all the answers in a small piece of paper and
iteratively classified it until clear themes appeared according to what
kind of information the answers were trying to capture (Fig. 2). In
grouping the cases, we focused more on capture context than the
captured content itself because the user's behavioral characteristic
while photo taking, which is the purpose of this study, is more closely
related to context than captured object. For example, although a
presentation slide could be printed on paper or projected onto a
screen, we differentiated between the two cases, as user behavior, and
the resulting photos may differ according to the form of the target.

3.1.2. Lab study design
We conducted an in-lab experiment to understand user behaviors

and find patterns of orientation errors. We also collected sensor data to
use in developing a correction method during the study. The partici-
pants were asked to take photographs of 20 documents using a
smartphone (Nexus 5) camera. We chose 20 sections from the pages
of a National Geographic magazine and highlighted these sections
using colored post-it flags. Half of these sections were vertically long
documents (portrait orientation) and the rest were horizontally long
(landscape orientation). Landscape and portrait documents appeared
alternately. Before conducting the tasks, the participants engaged in a
training session during which they took trial photographs, in order to
become familiar with the experimental settings.

We designed the experiment by conducting a series of pilot tests. To

mimic natural photo-taking behavior, we instructed the participants to
take photographs of documents as usual. The participants were allowed
to be seated or stand. The size of the target area to capture varied from
a small section to an entire page, as earlier in this paper. As the only
constraint, the users were asked to place the device on the desk
between photographs in order to treat each one as an individual task.
The phone's position on the desk was not specified, therefore some
variation naturally occurred. The reason for including various factors in
our experimental design is to conduct our user experiment in realistic
environment, which eventually will allow us to derive more generalized
results and solutions.

An Android reference phone, or a Nexus 5, and its pre-installed
camera app were used in this experiment. All portions of the experi-
ment were videotaped while the users interacted with the devices. In
addition, the sensor data were recorded during the experiment using a
sensor recording app.

Sixteen people with experience in smartphone document capture
using a smartphone were recruited from a large university. Their ages
ranged from 20 to 32 years (mean: 23.1, SD: 3.7), and seven were
female. None was left-handed. All participants were compensated with
5 USD in cash.

3.2. Online survey results

3.2.1. General response
The survey results showed that photos for information capture

including those of documents, are quite prevalent among our respon-
dents (Table 1). The number of respondents was 106 with a mean age
of 24.71, with std. 4.01 (max: 41, min: 28); 56.25% participants were
male, and 43.75% were female. 10 participants were rewarded with a
gift certificate equivalent to 9 USD by lottery. Almost all respondents
(98.11%, 104/106) utilized a smartphone camera for information
capture purposes other than portrait or landscape photos. Document
capture using smartphone cameras was also popular, 99.06% of the
users responded that they have taken document photos using a
smartphone camera. On average, the users took 7.29 document photos
per month (Fig. 3). Orientation errors were quite common among our
respondents with 79.30% having experienced this issue.

3.2.2. Category of captured information
To determine what information is captured, we analyzed 410

answers collected from 106 respondents. We removed 31 answers
because those were unclear or difficult to interpret. We classified the
remaining 379 answers using affinity diagramming, and classified the
answers into 7 categories as shown in Table 2.

Overall, our analysis resulted in two high-level themes, namely,
document and non-document groups, depending on whether the target
object of the photo is a document. The document group divides into
printed documents and hand written documents. Among printed
documents, we further found more specific themes depending on
whether the target object of the photo is attached to any fixture (e.g.,
walls, and objects), namely unattached printed documents, and
printed documents attached to a fixture. The remaining documents

Fig. 2. How affinity diagramming were performed.

Table 1
Survey results.

Question Response (%)

Yes No

Have you used the smartphone camera for the purpose of
information capture? (i.e., not a portrait or landscape, used
for information storage, sharing, collection, reference
purposes)

98.11 1.89

Have you taken any document using the smartphone camera? 99.06 0.94
Have you experienced the orientation error issue while

capturing a document using the smartphone camera?
79.30 20.70

Fig. 3. PDF for number document taken per month.

J. Oh et al. International Journal of Human – Computer Studies 104 (2017) 64–79

67



were classified as hand written documents. In our data set, no instance
of a hand written document attached to a fixture was found. For non-
document groups, we found three categories: projected slides, black/
white boards, and computer screens. The photos that do not belong to
any of above categories were grouped as miscellaneous: for example,
goods to buy, or food before eating (for journaling purpose). The details
for each category are as follows.

The unattached printed documents are general documents that is
not attached to any fixture. This category includes books, magazines,
brochures, booklets, receipts, transcripts, and identification cards.
People also captured part of documents: for example, a sentence in a
page of a book, or a picture in a magazine. The majority were in place of
digitizing the documents using a scanner for online submission or
archiving.

The printed documents attached to a fixture group consists of
documents that are attached to something, such as a wall and object.
The majority of this group is wall posters: for example, posters for
events, announcements, or recruitment attached to a wall; research
posters at an academic conference, and menus in restaurant.
Additionally, small documents, such as price tags on clothes, nutrition
facts on a bottle, WiFi passwords in a cafe, bank account information
on a utility bill, or the model number of an electronic device. These
photos are taken mainly for further reference or sharing. It seems that
information short enough to be typed in manually is often captured by
taking a photo. For instance, WiFi passwords, and bank accounts were
reported even though they might be easy to type in.

The photos of hand written documents are images containing hand
writing, for example, an idea sketch and a solution to math question.
Capturing note taking from a lecture and archiving assignments were
the most common cases for this category because our respondents were
primarily from the university community.

In addition to tangible documents, many photos of projected slides
taken during seminars or lectures were found. Respondents captured
these for two reasons. First, the slide is not publicly accessible. Second,
people want to keep bookmark-like information for a specific slide; in
this case, access to the slide files does not matter.

The black/white boards are photos of boards with writings from
seminars or lectures. This category is different from the hand written
documents in that it is written on a large wall surface such as a
blackboard or whiteboard. Many took photos of black/white boards
during lectures instead of taking notes for convenience. We found two
motivations for doing this. First, people did it in order not to miss any
content for the note taking because the lecturer often erases the board
before the audience takes notes. Second, some reported that they are
too lazy to take notes. It seems that note taking is being replaced by
smartphone camera photos due to the convenience of taking photos
and the laziness of people.

The computer screens are photos of PC or tablet screens as the
name suggests. Although computers themselves have screenshot
capabilities, many people reported that they share a screen by taking
photos of it. It is assumed that it is more convenient to do so for
sharing the scene with other people because of the prevalence of mobile

messengers. In addition, there were situations in which screenshots
cannot be captured such as a Windows error screen (generally called a
blue screen) or console environment (for installing an operating
system).

The miscellaneous are photos which did not belong to any category
above. Example in this category includes photos of goods to buy
(cosmetics, books, groceries), records of foods eaten (for food journal-
ing purposes), research experiment progress, workout posture, and so
on. We also observed that in a large portion of these instances, photos
are used as to-do list (e.g., something to buy, something to send,
somewhere to visit).

3.2.3. Summary
Our online survey showed that almost all respondents captured

information including documents using a smartphone camera. Almost
80% of the users experienced the orientation errors while capturing
documents, indicating that the problem is widespread. Among cap-
tured information, 64.65% were various types of documents: unat-
tached printed documents, printed documents attached to a fixture,
and hand written documents. We assume that the unattached printed
documents, and hand written documents suffer from orientation issues
most often because the target documents are generally placed on a flat
surface such as a desk, which is highly relevant to the root cause of the
problem (Section 3.3.2).

Compared to the paper of Brown and Sellen (2000), the captured
information differs from our result, especially in terms of the distribu-
tion of items. In their work, the marks on papers were the most
frequent for multimedia groups, whereas groups of printed documents
comprised the majority of information captured in our study. This
might be attributed to our data set, which was collected from natural
settings with actual users' data. Our result also provides a more
detailed view for categories which are described simply as a ‘specific
item’ or an ‘image of screen, writing and so on’ in the paper of Kindberg
et al. (2005).

3.3. Lab study results

3.3.1. Orientation errors
After the experiment, we counted how many photographs were

taken with the wrong orientation. The error rates for the landscape and
portrait modes were 0.93 (SD, 0.18) and 0.04 (SD, 0.17), respectively.
The landscape capture tasks showed much higher error rates because
the Android device used portrait mode as the default orientation
(Table 3).

Errors mainly occurred because the user held the device perpendi-
cular to the gravity, where a gravity-based orientation system does not
work properly. Most of the participants except P11 showed consistent
patterns, i.e., almost all of the landscape documents were captured with
an orientation error, whereas the portrait documents were captured
correctly (Table 4). P11 tended to tilt the device by approximately up to
45 ° before posing a top-down shot, which changed the orientation to
the intended mode before the gravity-based orientation system began
working incorrectly.

3.3.2. Video analysis
We investigated the user behaviors by carefully reviewing the

recorded videos, thereby gaining insight into fixing orientation errors.
Our analysis showed that the overall process consists of four steps: 1)

Table 2
Categories of information captured using smartphone cameras.

Category Ratio (%) Examples

Unattached printed documents 26.39 Book, magazine, brochure
Printed documents attached to a

fixture
24.54 Poster on a wall, price tag on

clothes
Hand written documents 13.72 Lecture note, idea sketch
Projected slides 11.87 Lecture or seminar slide
Black/White boards 7.92 Writing on a chalkboard
Computer screens 5.01 Error screen, e-mail
Miscellaneous 10.55 Goods to buy, food before

eating

Table 3
Summary of orientation error.

Document Correct Rotated to left Rotated to right Upside-down Total

Portrait 153 7 0 0 160
Landscape 11 147 1 1 160
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launching the camera app, 2) moving toward the target object and
optionally adjusting the orientation by rotating the device, 3) compos-
ing a top-down shot (including zooming, tilting, and panning), and 4)
touching the device to focus and press the shutter button.

First, the participants turned the screen on and launched the
camera app when the phone was placed on the desk (55%) or in their
hand (45%). This behavior should be carefully considered because
sensor readings vary widely depending on the starting positions.
Second, in the case of the landscape tasks, the participants adjusted
the phone's orientation. The portrait capturing tasks do not require an
orientation adjustment because the phone's default orientation is
portrait mode (as is the smartphone's home screen orientation).
Among the four orientations, with the exception of one session, we
observed only two orientations in the experiment. This pattern may be
consistent with left-handed users, which is very important because we
can reduce the number of possible states when designing an automatic
algorithm. Note that this step generally comes after launching the
camera app, but we also observed that in a few landscape sessions, app
launching was followed by device rotation. The one exception during
which the participant rotated the phone to the right during the
landscape tasks occurred because the participant accidentally dropped
the phone during the session. Because the participant answered in our
post-questionnaire that they never rotated the phone to the right for
landscape use, we were able to ignore this case. Third, the participants
then held their phone parallel to the plane where the document was
placed and attempted to zoom/pan to capture the target area. Finally,
once the target area was determined, the participants touched the
device's screen to focus (occasionally) and pressed the shutter button to
take the photograph.

In addition, other relevant behaviors were observed. Two partici-
pants (P12 and P16) took all of their photographs while standing, but
their moving and rotation timing and grip types were not significantly
different from those of other target objects. Three of the participants
(P7, P8, and P16) continuously touched the screen to focus before
pressing the shutter button. For this reason, the capture states of these
participants were longer than the states of the other participants.

We further found that an uncaught rotation was the root cause of
the problem. We observed that the system does not trigger an
orientation change event when the user physically rotates the device.
After the user moves the device toward the target object with an
uncaught rotation, the outcome falls into one of following cases: 1) the
initial orientation mode remains unchanged (portrait mode in our
experiment setting), 2) the orientation mode changes to an unintended
mode owing to the orientation error sensing in existing gravity-based
orientation systems. We also noted that the errors occurring during
landscape tasks were mainly from an uncaught rotation, and the errors
occurring during portrait tasks were due to unintended transitions into
an arbitrary orientation.

3.3.3. Analysis of captured photographs
We analyzed the captured photographs to further investigate the

characteristics of document capture. First, we found that the margin
around the target area varied widely among the different participants.
Furthermore, the target areas within the photographs were captured at
diverse sizes in the photos. Interestingly, we found that the content
captured in the photographs showed some skewness in both the left-
right and forward-backward directions. This indicates that the user did

not perfectly set their phone parallel to the ground, and the device was
tilted when the shutter button was touched. To calculate the skewness,
we cropped two edges of the content within the captured photographs
(upper and right edges) and calculated the border slopes. As shown in
Table 5, the skewness varied across the orientation modes. For
example, in portrait mode, an average of 2.29 ° of forward tilting
occurred. Although the observed tilt was less than 3 °, we hypothesize
that titling may be a good indicator for orientation sensing Table 6.

3.3.4. Hand grip analysis
The grip type varied from person to person, and could be classified

based on the number of hands used and the preferred grip. In 308 out
of 320 sessions, the participants used two hands. Only 12 of the
sessions showed one hand use for document capture. Two of the
participants tended to use a one-handed grip (8 out of 12 sessions). The
others applied a one-handed grip when using the other hand to unfold
and hold the book flat or to touch the screen for focusing. It was also
noted that some of the participants placed one hand under the device
for support, or picked the device up with their fingers.

The grips used for document capture fall into eight types, detailed
photographs of which are shown in Fig. 4. When capturing a landscape
document, with the exception of four sessions, all of the participants
picked up the smartphone with two hands (Fig. 4(a)). In the other
sessions, the participants supported the smartphone using their right
hand and picked it up using their left. For portrait mode, four grip
types were observed for two-handed usage, depending on which hand
the participants used for picking up the smartphone and which hand
they used for support when capturing the image. This included picking
up the phone with two hands, two-handed support, picking up the
phone with their left-hand and supporting it with their right, and
picking up the phone with their right hand and supporting it with their
left.

Most of the participants tended to use their preferred grip types
consistently during the entire study. However, some of the participants

Table 4
Error rate of 16 participants.

Document P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15 P16

Portrait 0 0 0 0 0 0 0 0 0 0 0 0 0 0.7 0 0
Landscape 1 0.7 1 1 1 1 1 1 1 1 0.3 1 1 1 0.9 1
Overall 0.5 0.35 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.15 0.5 0.5 0.85 0.45 0.5

Table 5
Skewness of content in the photographs.

Document Horizontal (Up) Vertical (Right)

Portrait 2.29° 0.57°
Landscape 0.51° 2.86°

Table 6
Summary of behavioral codes.

Tiers Annotation Definition

MCR state move Moving the device toward a target object
capture Document capture mode (top-down shot)
return Returning back to original position

Rotation state rotate-left Rotating the device to left
rotate-right Rotating the device to right

Event grab Grabbing a device
app Launching a camera app
focus Making a focus on target object by touching the

screen
shutter Pressing a shutter button

J. Oh et al. International Journal of Human – Computer Studies 104 (2017) 64–79

69



changed their grip type when they needed to use one hand for another
purpose such as focusing and unfolding the book. Some of the
participants varied their grip postured depending on the size of the
image to be captured.

3.3.5. Summary
From our preliminary lab study, we found some insightful user

behaviors for solving an orientation error. The key results and their
design implications are summarized as follows.

• While capturing a document, the users are likely to keep their device
parallel to the document which is generally located on a nearly flat
plane (e.g., a desk). This causes a gravity-based orientation system
to operate improperly, thereby generating many errors such as
ignoring the changes in orientation after rotating the device or
switching to an unintended orientation. Therefore, detecting a user's
document capture intention, which can be characterized as the
device being in a parallel plane, is useful for solving the problematic
occurrence of an orientation error.

• We found that changes in orientation resulting from uncaught
rotations are the root cause of this problem. Most of the errors

Fig. 4. Grip types used for camera apps.

Fig. 5. Overview of the coding scheme.

Fig. 6. Movement and rotation timing in terms of app event.
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occurred during landscape tasks, and when the users rotated the
device when it was placed on a flat plane. Thus, we can track the
rotation to infer orientation errors, particularly when a user is in the
document capture mode.

• According to our captured photo analysis, the captured photographs
were likely to be skewed by up to approximately 3°. This means that
the users tend to tilt the device despite their effort to keep it parallel
to the document. In addition, we found that the degrees of tilting for
landscape and portrait tasks differed from each other. This showed
that the orientation mode can be inferred by monitoring tilting the
degree of tilt when a user is in document capture mode.

• The types of hand grips used are more diverse for document capture
when compared to normal use. The use of hand grip would be a less
effective means for orientation correction. Furthermore, inferring
diverse grip postures would be quite a challenging task.

4. Scanshot design

Our preliminary user study guided us to design a novel solution
called ScanShot for detecting document capture and help the device
correct any orientation errors. The key concept underlying ScanShot is
that we can reliably detect whether a user is taking a top-down shot by
tracking an accelerometer. Once a top-down shot is detected, we then
analyze multiple sensor data to infer the current orientation mode. We
propose two methods for correcting an orientation error, one using a
gyroscope to track the rotation, and the other using an accelerometer to
calculate the orientation mode by sensing any slight tilting of the
device.

4.1. Capturing motion analysis

Based on our in-lab experiment, we analyzed the collected sensor
data to identify the behavioral patterns during capturing task. Three of
the authors annotated the sensor data by watching recorded videos. We
used ELAN software,1 which aids in video coding. The detailed coding
scheme is as follows.

An MCR state tier represents the movement of a device. This starts
from a move state and ends with a return state. A capture state means
adjusting the angle subtly when composing a top-down angle. We
added this state because an orientation error only occurs in context of a
top-down shot. The device seems to stay still without no subtle hand
motions in this state. This includes tilting and panning. A return state

indicates when the device is moved back to its original position. These
three states occur in sequence within a particular session.

A rotation state tier indicates the rotation of the device, which is
related to the change in orientation. A rotation is separated because it
is observed concurrently with an MCR state tier. Although there are
two possible directions of rotation, left and right, we only found left
rotations during our experiment. This is due to two reasons: 1) all of
the participants held the device with their right hand, which is their
dominant hand, which made a left rotation much more convenient than
a right rotation, and 2) the software and hardware are favorable for
using landscape left orientation mode, which even causes a left-handed
person to rotate the device to the left, e.g., most built-in camera lenses
are located at the top.

An event tier refers to an instantaneous event triggered at a specific
point in time. Focus refers to an event in which a user touches the
screen to focus the camera at the document. Events are optional and
can be observed multiple times. Note that each annotation can overlap
within other annotations in different tiers (Fig. 5). For example, the
user may move the device toward the target object while rotating the
device and launching the camera app with their finger.

We also analyzed the sequential steps of move state and rotation
state with respect to the app events. Four different timings were found
(Fig. 6). In Timing 1, the user first launches the camera app, and then
moves the device toward the target object. A rotation is found during
this movement. In Timing 2, the user starts to move the device toward
the target object and then launches the app: here the rotation occurs
during the movement. In Timing 3, the user movement and rotation
come first, and the camera app is then launched. In Timing 4, the user
moves and rotates the device simultaneously. The user launches the
camera app before the movement ends.

This finding was useful for determining when to enable sensor
monitoring for automatic detection of the device rotation. The users rotated
the device either before (Timings 3, 4) or after launching the app (Timings
1, 2). For this reason, the system was expected to monitor the sensor values
prior to launching the camera app because a physical rotation was
occasionally observed before the participants launched the app.

4.2. Document capture detection

To detect document capture corresponding to the capture state, we
propose a gravity-based detection method. When a camera app is
launched, the accelerometer values fluctuate because of the movements
(switching to a top-down shot with zooming/panning). After a few
seconds, the accelerometer values are stabilized because the user must
touch the screen to focus and then press the shutter button. When the

Fig. 7. Accelerometer used in a capturing task: (a) portrait shot, and (b) landscape shot.

1 ELAN: https://tla.mpi.nl/tools/tla-tools/elan/.

J. Oh et al. International Journal of Human – Computer Studies 104 (2017) 64–79

71



photograph is about to be taken, the Z-axis of the accelerometer is close
to the gravitational acceleration, or 9.8 m/s2. When taking a top-down
shot, the participant's hands may shake slightly causing small fluctua-
tions, as shown in Fig. 7. The sampling rate for the accelerometer was
125 Hz.

To distinguish the capture states from the move states, we
calculated their descriptive statistics (mean and standard deviation).
The values clearly show a distinction between the two states. As
expected, the mean of the capture state is close to 9.8 m/s2 and the
standard deviation of the capture state is much lower compared with
that of the move state (Fig. 8). After removing any outliers, we set the
threshold for document capture detection. Finally, we decided to
enable the document capture when the mean and standard deviation
of the acceleration value are within the range of [9.45, 10.05] and [0,
0.45], respectively. Note that a clear differentiation exists between
taking a photograph of a document and taking a normal photograph is
because the Z-axis value of the accelerometer will be nearly zero.

4.3. Orientation inference: rotation tracking (gyroscope)

We chose a gyroscope to detect changes in orientation because it
can accurately sense a rotation of the device (Fig. 9). The sampling
frequency of the gyroscope was set to 128 Hz which was obtained by

selecting the SENSOR_DELAY_FASTEST setting in the Android
SensorManager class. We used a moving window approach. For sensor
data processing, the sliding window of size w seconds moved over time,
with a segment size of s s.

To determine the appropriate window size, w, we analyzed the
rotation time. According to the analysis (Fig. 10), most rotating actions

Fig. 8. Comparison between move and capture states.

Fig. 9. Gyroscope traces during a capturing task: (a) portrait shot, and (b) landscape shot.

Fig. 10. Time distribution for device rotation.
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took less than 2 s. The maximum length was 2089 ms and the
minimum was 244 ms.

Because the sampling rate was 128 Hz (one sample per 66 ms), we
set the segment size to s=0.66 s (ten samples per segment), and the
window size to w=1.98 s (three segments per window). For a given
window, we integrated the Z-axis values of the gyroscope samples.
Thus, when this value was greater than the rotation threshold
(ROT_THRESHOLD), we classified it as a left rotation event; if it
was lower than the negative value of rotation threshold, it was classified
as a right rotation event. Otherwise, we assumed that no rotation was
made. By carefully analyzing the data set, we set the rotation threshold
used to detect a rotation event to ± 0.5, which corresponds to ±28.6°
according to parameter analysis (see Section 5.2). The overall process
of this approach is described in the following pseudo code
(Algorithm 1).

Algorithm 1. Pseudo code of rotation based ScanShot.

4.4. Orientation inference: tilt monitoring (accelerometer)

Based on our observation that users tend to tilt their phones
slightly, we devised a tilt based solution for the inferring correct
orientation. Because an accelerometer contains information on the
position of the device, including any tilting causing a skewness of the
photographs, we first generated numerical features statistically repre-
senting the status of the sensor values during capture state. Different
from the rotation based solution, this solution only makes use of
sample values during the capture state. Once the capture mode is
detected, ScanShot extracts the related features to update the orienta-
tion using the sensor values within the most recent time window.

The extracted features are the means of, and difference between
acc-X and acc-Y. We also generated binary features by converting the
numerical features into binary values (Table 7). We tested the binary
features because the numeric values could be highly dependent on the
characteristics of each participant, which would eventually affect the
generalizability of our algorithm because binary features only contain
high-level information of the user's posture (e.g., the direction the
device is inclined toward). To investigate how well the features predict
the orientation and how much difference exists between the numerical
and binary features, we calculated information gain which is commonly
used for measuring the predictive power of features (Fig. 8). The results
confirmed that the binary features also show a comparable predictive
power.

The following pseudo code describes how our tilt-based method is
applied (Algorithm 2). Once the camera app is launched, the ScanShot
loop begins. Every time a new window is generated from the sensor
listener, it calculates the new orientation based on the tilting pattern
data. If the device is capturing a document, the calculated orientation
overrides the existing gravity-based orientation information.
Otherwise, our method does nothing.

Algorithm 2. Pseudo code of tilt-based solution.

5. Evaluation

We evaluated ScanShot using the data collected from our previous
experiments because the entire sensor data while capturing document
was captured in previous in-lab study. We first analyzed the accuracy of
the document capture detection, and then evaluated the efficacy of the
two orientation correction methods, namely our rotation- and tilt-
based solutions. Our evaluation focused on the overall performance,
user variance, parameter sensitivity, and an analysis of misclassified
instances. For the tilt-based method, we additionally investigated the
impact of the classifier differences. The dataset used for our evaluation
is publicly accessible online (https://zenodo.org/record/56276). Note
that this evaluation is mainly to benchmark the performance and
effectiveness of the proposed methods such as 1) if the proposed
methods are able to fix the orientation errors, 2) how well our methods
works for correcting the orientation errors, 3) which parameters are
effective for the proposed methods.

5.1. Document capture detection

To evaluate the performance of our capture moment detection
algorithm, we first tested the its overall accuracy. We also investigated
1) the performance across different users and document types, 2) the
reasons for any misclassified instances, and 3) the influences of the
parameter values. To see how many instances were correctly identified
as document capture, we first extracted samples marked as a capture
state and then applied two conditions for distinguishing the moment of
document capture (mean and standard deviation of acc-Z) for each
sample. Before the analysis, we removed the first and last 10% of the
samples in the capture state because the annotation of the states could
contain some errors near the boundary between each state. Our
evaluation showed that the overall accuracy of document capture
detection was 93.44% (SD, 0.09), i.e., 299 out of 320 instances were
correctly classified.

We further calculated the accuracy for each participant in order to
check whether a user variance exists (Fig. 11). The majority of our
participants (12 out of 16) showed an accuracy greater than 0.90.
Although there were several participants who showed a lower perfor-
mance (P2, P4, P8, and P15), their accuracy values were still greater
than 0.70 Table 8.

Table 7
Two sets of features (numerical and binary).

Type Features

Numerical accX mean, accY mean, accX mean - accY mean
Binary whether accX>0, whether accY>0, whether accX>accY
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We also looked at 21 misclassified instances for better under-
standing of the errors that occurred, as shown in Table 9 where only
users with errors are reported. The misclassified instances occurred
mainly owing to the fact that the mean of acc-Z is smaller than 9.45 m/
s2, which was our threshold (18 instances in total). This means that
some of the users tended to tilt the device more than we expected. On
the other hand, five of the instances did not satisfy the standard
deviation, which means that some of the users shook their hands
during the capturing, which resulted a higher deviation than our
threshold. In addition, two instances failed to meet both conditions.

Finally, we analyzed the sensitivity of parameters by changing the
parameter values. We analyzed two parameters: the threshold for the
mean and the standard deviation. The threshold for the mean was
defined as the allowed difference from 9.8 m/s2. For both parameters,
accuracy converged to 100% as the threshold increased. As described in
Fig. 12, thresholds for the mean and the standard deviation should be
at least 0.25 and 0.35 respectively to achieve 90% accuracy. It should
be noted that overly large thresholds may include non-document
capture behavior as document capture.

5.2. Rotation-based solution

The rotation-based solution demonstrated its effectiveness by fixing
most of the orientation errors for landscape documents (92.85
percentage points) as shown in Fig. 10. It significantly reduced the
error rates for the portrait task. We manually investigated the error
cases (four instances in total), but did not find any notable patterns.
Compared to our previous work (Oh et al., 2015), we were able to
improve the performance of the algorithm significantly (i.e., 59% point
to 92% points in the case of landscape shots) because we considered
sensor data processing even before launching the camera app.

Our initial parameters (rotation threshold, 0.5; window size, 1.98)
were carefully chosen. As described in the following, we performed
additional sensitivity analysis of these parameters. We systematically
evaluated two of the parameters: the threshold for rotation detection
and window size for capturing the rotation events.

For the rotation threshold, we tested the values ranging from 0.1 to
1.9 with a 2-second window because the smallest rotation time was
244 ms and the maximum of rotation time observed was 2 s (Section
4.3). As the rotation threshold increased, the accuracy increased up to
0.98, where the thresholds were 0.5 or 0.6, and started to mono-
tonically decrease after 0.70 (Fig. 13a). This is because such a small
threshold value is insufficient for capturing a rotation event, whereas

overly large values make the capturing too strict, causing many events
to be missed. From this result, we can conclude that a rotation
threshold of 0.5 is the best choice for detecting changes in orientation
when using a gyroscope.

For the window size, we observed that a window size of smaller than
500 ms is less effective for detecting a change in orientation. We varied
the window size using 100 ms increments. As the window size gets
larger, the accuracy increases as well. There were drastic changes near
400 ms mark, where the accuracy was increased to 0.90, and it slowly
converged to an accuracy of 0.98 (Fig. 13b). This is because an overly
small window size was insufficient to capture the entire rotational
movement of an orientation change. If the window size becomes larger
than a certain level (i.e., 500 ms), then multiple movements are
clumped together, which makes the movement difficult to be detected.

5.3. Tilt-based solution

To build a classification model for inferring the orientation mode,
we used Weka 3.7 which is a well-known tool for machine learning and
tested widely used classifiers, namely a decision tree (DT) and support
vector machine (SVM), for activity recognition researches (Bao and
Intille, 2004). For a DT, our model uses the C4.5 algorithm. For an
SVM, our model utilizes a radial basis function (RBF) kernel for model
training. To calculate the overall accuracy of each classifier, we
conducted a ten-fold cross validation. We tested two feature sets
introduced in Section 4.4 using these two classifiers. We also tested
other learning models such as nearest neighbors and Naive Bayes, but
did not observe any improvements over these algorithms Table 10.

The tilt-based solution lowered the error rate of landscape tasks by
81.6 percentage points (Table 11). Although the error rate slightly
increased by 2.51 percentage points for portrait tasks (owing to the
existence of sensing errors), the total error rate was still significantly

Fig. 11. Accuracy of document capture detection for each participant.

Table 8
Information gain of extracted features.

Feature Type Information Gain

accX mean - accY mean Numerical 0.6704
accY mean Numerical 0.4954
whether accX>accY Binary 0.4743
whether accY > 0 Binary 0.4473
accY mean Numerical 0.3733
whether accX>0 Binary 0.0863

Table 9
Number of misclassified instances of document capture detection.

Condition P2 P4 P5 P8 P14 P15 Total

Mean of Acc-Z 6 5 0 3 1 3 18
Std. of Acc-Z 0 0 2 0 0 3 5
Total 6 5 2 3 1 4 21

Fig. 12. Parameter sensitivity analysis for document capture detection.
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reduced by 38.44 percentage points.
We also examined the performance of each participant to check the

user variance. During the evaluation, we applied a leave-one-subject-
out model building and evaluation, where we trained a given machine
learning model using the data of all participants except for one
participant, and tested the model using the data of the omitted
participant. We found that most of the errors were dependent on
user-specific behavioral characteristics (Fig. 14). Interestingly, nine out
of the 16 participants showed an accuracy of 100% accuracy. The result
also showed that the classifier did not work well for several partici-
pants, namely P1 and P3. According to a gesture recognition study
(Bulling et al., 2014), building a user-specific model can significantly
improve the classification performance (i.e., data from a given user are
used to train the model). Our cross-validation results showed no
notable improvements. Our manual investigation of the dataset showed
that the participants with a low accuracy were likely to be highly
precise in balancing the device (i.e., almost perfectly parallel to the
ground). For instance, the means of acc-X and acc-Y were almost zero
for P1 (60% accuracy) as shown in Fig. 15. Users with a low accuracy
(i.e., P3, P7, P11, P12, P13, and P16) showed a similar pattern. On the
other hand, the patterns from the remaining participants showed a
clear distinction between portraits and landscapes.

The best performing combination was an SVM with binary features,
which reached an accuracy of 89.7%, although the remaining combina-
tions showed accuracy levels reaching nearly 90% too (Table 11). It is
worth noting that the classifier with binary features performed better
than the classifier with numerical features, which may be owing to the

fact that binary features are less susceptible to an overfitting.
Overall, our results showed that the proposed rotation-based

solution can fix most errors and is superior to the tilt-based solution
in terms of performance. Nonetheless, several cases exists in which the
tilt-based solution has an advantages over the rotation-based solution.
First, it does not need to collect the sensor data before launching the
camera app. Recall that the rotation-based solution needs to monitor
the sensor value prior to launching the camera app in order to achieve a
high level of accuracy. Second, it can also be applied to mobile devices
without the need of a gyroscope sensor. Smart watches with a camera
(e.g., Samsung Gear 2) or a conventional digital camera (e.g., GoPro)
may not have a gyroscope installed. In this case, our tilt-based solution
can be an alternative solution (Table 12).

6. Discussion

In this paper, we proposed the use of ScanShot, which identifies the
moment of document capture and corrects any orientation errors. For
document capture, we propose the application of a simple acceler-
ometer-based detector, and for rotation correction, we propose ap-
proaches, namely rotation event detection and micro-titling detection.
Our experiment showed that these approaches can reduce rotation
errors significantly.

Because our experiment only considered in-lab conditions, we will
next discuss whether ScanShot is generalizable for various situations.
We will present additional test results under a more realistic setting,
and discuss the generalizability of ScanShot. Next, we will illustrate
how our method can be integrated into gravity-based orientation
management schemes of current smartphones. Finally, we will discuss
the design implications derived from our study. Specifically, we will
discuss 1) various application scenarios of document capture detection,
2) the diversity of hand grips applied during document capture and the
potential issues for designing a mobile interaction system, and 3) the
recognizability issues of UI indicators in smartphone camera's view-
finders.

6.1. Generalizability issues

There are additional factors that may affect document capture such
as the initial location of the device, the possibility of taking a series of
document photographs or alternating between regular use and photo-
graphing documents, and variations in the software and hardware. We
will discuss the potential impacts of these factors.

First, the initial location of the device will not significantly influence
the performance of our algorithm because ScanShot updates the

Fig. 13. Parameter sensitivity analysis for rotation detection.

Table 10
Comparison of error rates without and with the use of the rotation-based method.

Document w/o ScanShot w/ ScanShot Diff.

Portrait 5.62% 0.0% −5.62
Landscape 94.10% 1.25% −92.85
Average 48.75% 0.63% −48.12

Table 11
Comparison of error rates without and with tilt-based solution.

Document w/o ScanShot w/ ScanShot Diff.

Portrait 5.62% 8.13% +2.51
Landscape 94.10% 12.50% −81.60
Average 48.75% 10.31% −38.44

Fig. 14. Classification accuracy by participant (tilt-based solution).
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orientation only when document capture is observed just before the
shutter button is pressed. ScanShot may fail to correct the orientation
under a certain contrived scenario, e.g., although the default orienta-
tion of the smartphone at the time the app is launched (or when the
smartphone is turned on) is portrait mode, its actual orientation may
be in a different orientation mode, say, landscape mode. In our
experiment, such as case was rarely observed. For the micro-tilt
detection, this type of mismatch problem does not affect the perfor-
mance because the detection relies solely on the accelerometer's values
at the time of document capture.

Taking consecutive shots does not have a significant influence on
how ScanShot operates. While tracking the rotations using a gyroscope,
ScanShot continuously tracks every rotation event, and we can thus
always have the up-to-date orientation. For micro-tilt behavior detec-

tion, such behavior is observed every time a user captures a document.
This means that micro-tilt detection is not likely to be affected by the
taking of consecutive photographs. Thus, the accuracy when taking
consecutive shots may be comparable to that involving the taking of
individual photographs.

The diversity of the mobile devices may also affect our algorithms.
We tested the camera apps on several platforms, namely, iPhone 5 and
6 and Galaxy S4 and S5, to see whether they would show the same
behavior as the Nexus 5 used for our study. We used the default camera
app pre-installed on each device. For the iPhone 5 and 6, the default
orientation was portrait mode, and the orientation patterns were
similarly to those observed in the Nexus 5. However, for Galaxy S4
and S5, the camera apps work differently. Interestingly, the default
orientation of the camera apps was the one previously used by the

Fig. 15. Distribution of acc-X and acc-Y during capture state.
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camera app. This means that the default orientation may not be
portrait mode. For example, if the user closed the camera app in
landscape mode, its default mode will also be landscape mode. Our
rotation-based solution tracks the rotation movement from an incor-
rect initial position. We can easily handle this case by simply overriding
the default orientation of the camera app and use the system's default
orientation when document capture moment is detected.

We additionally conducted small experiments under different
settings than those used during our in-lab study in order to make sure
that our proposed method generally works in realistic environment
without any issues concerning the generalizability of ScanShot. We
recruited three participants whose age are 32, 27, 24 respectively
(mean: 27.67, and std.: 4.04) and asked them to perform a capturing
task under more naturalistic settings. We tested two different condi-
tions: i.e., a different initial location where the user has to take the
phone out of their pocket, and a different document placement where
the document was rotated by the right 30°. Under each condition, the
participants were asked to capture two landscape and two portrait
documents. They were asked to capture eight documents in total. Our
results show that ScanShot works consistently under both conditions,
as shown in Table 13. For generalizability-related issues, we found two
cases of errors in our rotation-based solution. The first case occurred
during landscape document capture where the user had already rotated
their phone to landscape mode before turning on a device. Our rotation
based solution failed to detect this movement because the rotation was
finished before the sensor monitoring had a chance to start. The second
case occurred because there was insufficient rotation to the left because
the documents initial position was rotated toward the right. For the tilt-
based solution, we did not observe any notable patterns of errors
differing from those during our in-lab study.

6.2. Integrating scanShot with existing systems

Hinckley et al. (2000) studied how accelerometer-based tilt sensing
can be used for an automatic adjustment of the orientation. In practice,
we can easily detect a left-right tilt as well as a forward-backward tilt of
a mobile phone. For example, a portrait mode has +90° of forward-
backward tilt, and zero degrees of left-right tilt. Likewise, a landscape
mode has −90° of left-right tilt, and +90° of forward-backward tilt. In
their work, the gray zones are ±5° dead bands that prevent jitter; the
tilt angles must pass the gray region in order to change the display
orientation. Interestingly, the device is intended to rest in flat mode
when the tilt angles fall within ±3°, and the device does not change the
display orientation.

ScanShot supplements a flat and gray range (±5.0°) in which the
system is unaware of the current orientation. A document capture is
detected only with a tilting threshold angle from the flat plane within
±12.43°, which corresponds to a mean acceleration-Z value within the
range of [9.45, 10.5], as described in Section 4. For the range of
5–12.43°, the system designer can decide which method should have
priority (e.g., ScanShot has a higher priority when a camera app is
running).

We also measured Android's tilt threshold for changes in orienta-
tion to check the co-existence with our solutions. According to our
measurement using a Nexus 5 phone, which was used in our experi-
ment, the threshold values in portrait and landscape modes were
measured to be 18.40° and 23.32°, respectively. These tilt thresholds for
changes in orientation are much greater than the thresholds used by

our algorithms. Thus, ScanShot can co-exist with Android's orientation
management schemes without any conflicts. Consequently, ScanShot
can be seamlessly integrated into an OS's orientation management
scheme. It is worth noting that combining the two proposed methods
could compensate each other. The rotation based method might work
better in the situation that time for photo taking is too short to observe
tilting after moving toward the subject. The tilt based method would
not work well for those users who have a usage habit of maintaining
strict balance. Depending on photo taking time and tilting habits, we
could selectively enable one of the methods.

6.3. Design implications

6.3.1. Context-aware services for document capture
Detecting document capture intention enables novel context-aware

services for document capture such as document photograph manage-
ment, and adaptive user interaction support. In document photograph
archival scenarios, mobile devices can handle mobile document capture
events for document management separately. Existing image classifica-
tion techniques are mostly based on computer-vision methods applied
to infer semantic meaning from photographs, by analyzing the content
(e.g., color and texture distribution) and meta-data (e.g., exposure time
and flash) (Szummer and Picard, 1998; Vailaya et al., 1999). ScanShot
supplements these computer vision approaches in that we can fairly
accurately infer a users document capture intention at minimal cost.
Another promising application is adaptive user interaction support. By
recognizing a user's intention we can adaptively tailor a camera's
viewfinder screen specifically for document capture. For example, the
default camera app can adaptively present different UI menus for
document capture such as document cropping, document contrast
control, and document boundary detection. Furthermore, the taken
photographs can be automatically delivered to document-related
applications (e.g., opening a document management app or a note
app). Compared with more general vision based methods, our accel-
erometer-based intention inference methods require considerably few-
er resources (energy and processing), and it can be applicable to any
digital camera devices with an accelerometer. Thus, its potential
applications are quite wide.

6.3.2. Diversity of hand grip positions for mobile interactions
The hand postures of mobile devices are one of the important

contextual factors for mobile interaction. Prior studies have shown that
hand posture and its related information (e.g., the number of hands
and fingers) has a critical impact on mobile device usage (e.g.,
interaction performance) (Wobbrock et al., 2008). In addition, we
argue that hand positions are strongly related with the design of the
user interface components on a touch screen device such as the button
placement. Researchers have previously explored a number of techni-
ques for sensing the hand position and its related measurements (e.g.,
device orientation, sensing pressures imposed on a touch screen, and
customized interaction techniques based on grip) (Taylor and Bove,
2009; Goel et al., 2012; Wimmer and Boring, 2009; Hwang and
Bianchi, 2013). Yet, these studies have only explored typical hand
grips and have not considered hand grips that are related to a camera
app. For example, Kim et al. (2006) built a hand-grip classifier for
various applications (e.g., calling, sending text messages, camera use,
watching videos, and playing games), but only a few hand grips were

Table 12
Classification accuracy.

Classifier Numeric features Binary features

SVM 89.4% 89.7%
DT 86.9% 88.8%

Table 13
Error rate for generalizability test.

Condition Initial location (in the pocket) Rotated document (30°) Average

Default 54.17% 66.67% 60.42%
Rotation 8.33% 8.33% 8.33%
Micro-tilt 12.50% 12.50% 12.50%
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considered. According to our study, we found that hand grips for
camera manipulation are much more diverse than those reported in
previous studies. For example, we found that at least there are eight
hand grips for mobile camera interaction. Camera apps seem to have
more variations than other apps because users should not block the
camera lens on the back of the mobile device, and should maintain a
stable posture for capturing clear images. For example, users are likely
to grasp the side of the device instead of the back where the lens is
located. Therefore, our results show that different hand grips should be
further studied by considering various application contexts (e.g.,
camera, SMS), hardware characteristics (e.g., external buttons, lens),
and the screen sizes. Additionally, we assumed that user variations
(e.g., hand size and height), and environmental factors (e.g., the
document size) may affect the behavior.

6.3.3. Increasing awareness of peripheral UI indicators
While capturing a document using a camera app, we found that

users rarely recognized the current orientation mode of the device. As
shown in Fig. 16, a camera icon is typically used as the orientation
indicator. In Fig. 16, the device shown is currently turned to landscape
mode, but the icon shows that it is actually in portrait mode, i.e., the
system failed to capture the change in orientation. To our surprise, only
a few of the users recognized the orientation change. The majority of
our participants did not recognize the orientation errors despite the
fact that the information was presented in the orientation indicator UI.
This clearly shows that the shape and arrangement of the indicator UI
components were ineffective at delivering this information while the
user interacted with the viewfinder.

Theories on visual attention provide possible explanations for this
observation. Our sight consists of central and peripheral vision. Central
vision provides much better resolution than peripheral vision
(Johnson, 2010). Thus, the spatial resolution of our visual recognition
decreases significantly from the center to the edges (Lindsay and
Norman, 2013). Our low-resolution peripheral vision exists mainly to
guide our central vision to visit the interesting parts of our visual field.

While the users are capturing a photograph, their central vision is
primarily on the object in the preview screen (e.g., moving around to
capture the area of interest and touching the screen to re-focus the
camera). The UI indicator for the current orientation is located in the
user's peripheral vision and likely to fail to draw the user's attention for
several reasons. Because the user's focused on their central vision for
the capturing tasks, and because our peripheral vision has a low
resolution, the visual indicators should be salient enough to draw the
user's attention. The current indicator simply rotates the black or gray
camera icon slowly, which is rarely recognized by the user. Designers
are recommended to employ clearer visual cues. For example, we can
have a blinking indicator to show the current orientation. Alternatively,
we can display an overlay guide on top of the central vision area, and
we can show a paper-shaped guide such that users can easily recognize
the current orientation while a capturing document. Considering these
cognitive issues, there should be further study on how to design UI
components indicating the system's status (e.g., orientation changes)
while users are interacting with other parts of the screen (e.g., a
preview screen).

6.4. Limitations and future work

For online survey result, there could be undiscovered categories of
information capture because our respondents were recruited from
online university community. However, we believe the most of use
cases were covered in our survey because university students are
usually an early adaptor group for technologies.

Although studies regarding information capture using the camera
phone, such as the general motivation for producing digital photo-
graphs, have been conducted (Lux et al., 2010; Kindberg et al., 2004,
2005), little is known regarding user behavior, especially in the context

of document capture using a camera. In addition to online and alb
study result, there should be further studies on understanding the
entire process of information capture, ranging from the motivation of
document capture, and the management of captured documents.

For lab study, further experiments with different factors (e.g., age,
task, and platform) are required for a better understanding of the
impact of these factors on the document capture behaviors even though
we discussed the generalizability issue. Because ScanShot can work
with existing camera apps, we will add ScanShot to the various app
stores. This kind of in-the-field experiment will bring about more
insight into the generalizability issue.

7. Conclusion

We analyzed the problem of orientation errors in document capture
using a smartphone camera. We investigated the error rates of the
orientation error, the hand grips used for capturing a document, and
the skew angle of captured documents. Based on the user study, we
proposed ScanShot, which automatically detects the document capture
to update orientation change. ScanShot supports these features solely
with the use of built-in motion sensors, namely an accelerometer and
gyroscope. Our evaluation showed that the rotation-based method and
the tilt-based solution reduce the error rate by 92.85 and 82.60
percentage points respectively. We discussed the generalizability and
integration issues of our proposed methods and design implications
including context-aware services for document capture, the diversity of
hand grips used, and increasing awareness of camera UI indicators.
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