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ABSTRACT
Auditory-verbal or speech interactions with in-vehicle in-
formation systems have became increasingly popular. This
opens up a whole new realm of possibilities for serving dri-
vers with proactive speech services such as contextualized
recommendations and interactive decision-making. How-
ever, prior studies have warned that such interactions may
consume considerable attentional resources, thus degrade
driving performance. This work aims to develop a machine
learning model that can find opportune moments for the
driver to engage in proactive speech interaction by using the
vehicle and environment sensor data. Our machine learning
analysis shows that opportune moments for interruption can
be conservatively inferred with an accuracy of 0.74.

CCS CONCEPTS
• Human-centered computing → User interface man-
agement systems; Ubiquitous and mobile computing.
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1 INTRODUCTION
The popularity of auditory-verbal interfaces and proactive
intelligent agent open up new opportunities for drivers to re-
ceive personalized proactive speech services while driving [5].
Although such services benefit drivers, they can negatively
affect driving performance. For example, Faure et al. showed
that the use of speech interfaces can degrade driving per-
formance, particularly when a driver is cognitively over-
loaded with driving [10]. This is due to a concurrent execu-
tion with a limited amount of cognitive resources. In driving
contexts, for their safety, drivers must concurrently execute
driving task and secondary task (e.g., proactive services) [10]
and share their limited capacity of cognitive resources for
the both tasks (or dual-task) [14]. If the residual cognitive
resources are not available for the dual-task, it cause per-
formance decrements in either one of, or both tasks (i.e.,
dual-tasking interference). This emphasizes the importance
of finding opportune moments in driving contexts, in which
people can safely engage in proactive speech services while
driving.
Finding such opportune moments has been one of the

active research areas. Traditionally, studies have considered
mostly computing environments (e.g., desktop and mobile
devices), where task-switching is feasible [2, 12]. However,
the findings in these studies cannot be directly applicable
to the driving contexts. As task-switching is not feasible
while driving. In driving contexts, task-switching induces
various unfavorable effects (e.g, eye-off-road and hand-off-
the-wheel) [10]. Relatively, a small number of studies has
investigated opportune moments in driving contexts (in-
vehicle opportune moments) [11, 12]. These studies utilized
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subjective measures (e.g., driver preference and availability)
for the investigation. For example, Semmens et al examined
opportune moments by asking “Is now a good time?” (driver
availability) [11]. Suchmoments, however, may not represent
safe moments for drivers to perform a secondary task. Prior
research suggest that drivers tend to overestimates their
driving capability and carelessly engage in any tasks [10,
13]. This highlights that when finding in-vehicle opportune
moments, it is important to systematically consider driving
safety.

Despite the popularity of speech interfaces and proactive
services [5], there are still insufficient systematic studies
of what constitutes in-vehicle opportune moments and of
how they can be measured and predicted for delivering in-
vehicle proactive speech services. In this study, we first de-
fined opportune moments for speech interactions, and then
iteratively developed an experimental framework through
a series of simulation and real-road pilot trials. The key dis-
tinction is that our framework considers multiple dimen-
sions, namely driving safety, auditory-verbal performance,
and overall perceived difficulty. We then collected data in
a real-world field trial with 29 drivers (IRB Approval No.
KH2016-49). Finally, we built machine learning models for
predicting driver interruptibility.

2 DEFINING IN-VEHICLE OPPORTUNE MOMENTS
Our goal is to develop a driver interruptibility classifier that
infers in-vehicle opportune moments to engage in proac-
tive speech services. The finding in prior studies (e.g, dual-
tasking interference) implies that driving safety must be
considered. In this work, we propose using following dimen-
sions to define in-vehicle opportune moments. (1) driving
safety is critically important for in-vehicle information ser-
vices, where unfavorable effects on driving performance can
negatively affect the safety of drivers, passengers, other road
drivers, and pedestrians. Therefore, engagement should not
negatively affect driving performance for safety reasons. (2)
auditory-verbal task performance is important from a practi-
cal point of view, as the driver should be able to successfully
finish an auditory-verbal task. (3) overall perceived difficulty
is particularly important to assess perceived interruptibil-
ity from user perspective, as typically considered by prior
works [12]. The driver should not feel a considerable burden
when performing a dual-task.

Depending on the purpose of services, it is possible to use
a combination of the dimensions both disjunctively and con-
junctively. However, driving safety must be always included
in the combination as it is always the top priority for any in-
vehicle system. In this study, although it is very conservative,
we considered the conjunctive form of the three dimensions
to label interruptibility for the classifier.

Figure 1: Procedure of a secondary task (N -back test type =
1-back test).

3 EXPERIMENTAL FRAMEWORK
There are still insufficient systematic studies of how to col-
lect interruptibility dataset under various interruption con-
texts, such as varying level of secondary task demand and
diverse driving contexts [11, 12]. Thus, we iteratively de-
velop a framework, via two simulator and two real-road
pilots studies, that enables such collection. The final version
of the framework consists of (1) secondary-task procedure
(2) task-triggering method, and (3) interruptibility metrics.

Secondary Task Procedure: As shown in Figure 1, to sys-
tematically induce varying levels of cognitive demand, we
employed n-back tests [6], which has a similar cognitive
engagement to externally-paced speech interactions. The
entire procedure of the task consists of three stages: (1) Ask-
ing stage is when a driver is asked if he is willing to engage
in the remaining stages. If the driver answers “Yes” within
2.5 seconds, the remaining stages are presented. Otherwise,
the current task ends immediately. (2) Interacting stage (n-
back test) is when the driver is asked to perform the n-back
test. The n-back test sequentially presents seven randomly-
selected numbers from 0 to 9 to the driver at 2.25 second
intervals. The driver is required to repeat back the single dig-
its by following one of three tasks: 0-back (a very mild task
demand), 1-back (a moderate level), or 2-back (a high level
of task demand) (3) Measuring stage, in which the procedure
finishes, is when the driver is asked to verbally indicate the
overall perceived difficulty (very easy: 1 - very difficult: 5) of
the dual-task during the previous stage (interacting stage).
Task Triggering Method: To trigger secondary tasks in di-

verse driving contexts, we designed the triggering method
that presents the tasks based on a hybrid approach of two
triggering methods: (1) location-based triggering method -
presenting tasks at specific locations, associated with var-
ious driving environmental factors (see Figure 2), and (2)
random-interval triggering method - presenting at random
intervals between 30 and 90 seconds, if the distance to the
next predetermined location is sufficiently long.
Interruptibility Metrics: The metrics consist of three met-

rics to measure three interruptibility dimensions in our defi-
nition. Each metric indicates interruptibility as a binary out-
come (i.e., interruptible or uninterruptible). (1) Driving safety
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Figure 2: Route A in the round-trip driving course. Route B
(returning route) is slightly different from Route A (see the
dotted box for a different route).

measures how safely a user drives a vehicle. It indicates inter-
ruptible if driving performance when dual-tasking of driving
and secondary tasks (n-back test) was not degraded when
compared to the performance when performing driving task
alone. For the driving performance metric, steering wheel
reversal rate [7] was used. (2) Auditory-verbal performance
measures how well a user performs an auditory-verbal task
based on the accuracy of the n-back test. It indicates inter-
ruptible if a driver correctly answered all the items in a given
test. (3) Overall perceived difficulty measures how difficult
it is to perform a dual task. It is based on the rating in the
measuring stage (see Figure 1). It indicates interruptible if
the normalized value of the rating was less than or equal to
0.5. We re-scale the rating to be range of [0, 1] using min-max
normalization, because we found that in iterative develop-
ment stages, each driver had a different range of values.

4 ON-ROAD DATA COLLECTION AND RESULTS
We used our framework to collect the real-road driving
dataset, which was used to build interruptibility classifier.
For the data collection, we recruited 29 drivers (Age: M =
43.2, SD = 11.4). Drivers were asked to drive a round-trip
driving course (route A and B) that is designed to reflect
various driving environmental complexity (various maneu-
vers, differing levels of traffic density, etc.). The vehicle was
instrumented with OBDII and dashcams to collect following
data: (1) vehicular data (e.g., steering wheel angle, speed,
etc.), (2) environmental information (maneuver type, the dis-
tance to adjacent cars, and the number of nearby cars in
the front, left/right lane of the vehicle), and (3) task-related
data (self-reported overall difficulty level, accuracy of given
n-back tests).

The experiment took approximately 4.5 hours (driving: 30
mins x 4, break: 10 mins x 2 + 30 mins). Drivers drove the

driving course for twice (baseline and secondary-task driving
session). Prior to each driving session, campus drive was
provided for the adaptation to driving. The baseline session
involved no secondary tasks and was used as a baseline to
compare driving performances. For secondary-task session,
a training session of n-back tasks was additionally provided.

During the secondary-task session, the drivers performed
an average of 47.86 (SD = 6.83) secondary tasks, of which
40 cases were performed at predetermined locations (20 for
each route). In total, drivers performed 1,413 cases, of which
25 cases were excluded due to a recording problem. Thus,
the final dataset consists of 1,388 cases.

5 INTERRUPTIBILITY PREDICTION
For interruptibility prediction, we considered both general
and user-specific models. We first illustrate how we label
interruptibilty and generate features. We then selected the
best machine learning algorithm and window size for our
general model, and then evaluated the user-specific models.
Interruptibility Labeling and Feature Generation: We la-

beled the interruptibility of each secondary task as a binary
outcome (i.e., interruptible or uninterruptible). A secondary
task was labeled as interruptible when all three dimensions
indicated interruptible (see metrics in Section 3). Among
1,388 cases, 939 were interruptible and 449 were uninterrupt-
ible. To generate features, we used the vehicle and environ-
mental data that were collected over a specific time window
(1–5 seconds) before the start of a secondary task execution.
We generated features for each time window by taking each
of following mathematical operators for each type of data:
mean, SD, maximum, minimum, median, and skewness. In
addition, we also included a type of an incoming n-back test
as a feature. Since it is system-initiated interaction, we as-
sume that the cognitive demand (n-back type) of an incoming
interaction can be measured a priori. In total, we had 171
features for model building.

Table 1: Performance (F-measure) of general models against
machine learning (ML) algorithm and window sizes.

Window size (in seconds)

1 2 3 4 5

ML
algorithm

Decision Tree 0.57 0.59 0.59 0.56 0.58
SVM 0.18 0.15 0.14 0.13 0.13

Naïve Bayes 0.73 0.70 0.65 0.61 0.61
Random Forest 0.73 0.74 0.70 0.71 0.69

Selection of Best-performing ML Algorithm and Window
Size: We first examined the general models that used an ag-
gregated dataset of all drivers. To determine the best machine
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learning (ML) algorithm and window size for our general
models, we considered four well-known ML algorithms and
five window sizes. As shown in Table 1, we considered four
popular ML algorithms. We trained each ML model using
windows with a size varying from 1 to 5 seconds. The perfor-
mance of each model varied with the ML algorithms, regard-
less of its window size. Namely, the random forest model
achieved the best performance greater than 0.70 among the
four ML algorithms.
Driver Variance: The interruptibility of a secondary task

could be varied by individual differences, because driving
and auditory-verbal performance for a driver is highly cor-
related with the driver’s capabilities [10]. Because of this,
we also considered individual differences in our models. We
built user-specificmodels and compared performance of user-
specific models and a general model. For the user-specific
models, each model was individually trained and tested with
specific user data. For the performance of the user-specific
models, we used an average value for the models as there
were multiple models (one for each user). The average perfor-
mance (F-measure) of the models was 0.71, which is similar
to the performance of the general model (0.74).

6 CONCLUSION
In this study, we proposed an interruptibility framework for
proactive speech tasks, by exploring multiple dimensions
of driver interruptibility (i.e., driving safety, auditory-verbal
performance, and overall perceived difficulty). We then col-
lected a real-road dataset and showed the interruptibility can
be reasonably predicted even when conservatively consider-
ing all three dimensions.

Beyondmanaging system-initiated interactions, ourmodel
can be also 1) used towarn and proactively limit user-initiated
interactions when drivers are classified as uninterruptible [3,
4] or 2) implemented in systems that mediate risking behav-
iors of drivers [1]. Our system design collect multiple sensor
data ranging from in-vehicle control to dashcam videos, and
there should be further studies on the privacy concerns on
sensor data collection and usage [8, 9].
Recent advances in intelligent agents enable a variety of

proactive speech services, even in driving contexts. In this
growing field, we hope that our study serves as another
step towards investigating driver interruptibility, as well as
enabling various in-vehicle proactive speech services.
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